Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Роль и место тригонометрических уравнений в школьном курсе математикиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Тригонометрические уравнения занимают одно из центральных мест в курсе математики средней школы, как по содержанию учебного материала, так и по способам учебно-познавательной деятельности. Умения решать тригонометрические уравнения должны быть сформированы при их изучении и применены к решению большого числа задач теоретического и прикладного характера. В школьном математическом образовании с изучением тригонометрических уравнений связаны несколько направлений: -прикладная направленность; -теоретико-математическая направленность; -направленность на установление связей с остальным содержанием математики Требованием нашего времени является необходимость усиления прикладных направлений в обучении математике. Как показал анализ содержания школьного математического образования, возможности решения тригонометрических уравнений в этом плане достаточно широки. Тригонометрия традиционно является одной из важнейших составных частей школьного курса математики. И этот курс предполагает задачи, решить которые, как правило, можно, пройдя целенаправленную специальную подготовку. Анализ школьных учебников по математике в полной степени определяет место тригонометрических уравнений в линии изучения уравнений. Изучению темы «Решение тригонометрических уравнений» часто предшествует изучение таких тем как «Преобразование тригонометрических выражений» и «Основные свойства и графики тригонометрических функций». В разделе «Решение тригонометрических уравнений и неравенств» мы знакомим учащихся с понятиями арксинус, арккосинус, арктангенс. Опыт преподавания математики показывает, что осознание важности изучаемого материала приходит к ученикам не в процессе его изучения, а в процессе его применения при решении других заданий, т.е. тогда когда он становится средством для решения других задач. Так, например, решение уравнения , сводится к простейшему уравнению , причём частному виду простейшего, после элементарного преобразования выражения, стоящего в левой части уравнения по формулам сложения косинуса. Мы видим, что именно здесь школьники могут наблюдать пользу от изучения формул тригонометрии. С их помощью нерешаемое, на первый взгляд, уравнение принимает достаточно простой и, главное знакомый вид. При таком подходе изучения тригонометрии, когда уравнения и неравенства изучаются после формул преобразования тригонометрических выражений, место тригонометрических уравнений и неравенств определяется через систематизацию знаний по темам «Преобразование тригонометрических выражений» и «Основные свойства и графики тригонометрических функций». Если же тригонометрические уравнения и неравенства изучаются до темы «Преобразование тригонометрических выражений», то здесь место их изучения определяется совершенно противоположным образом. Здесь на изучение тригонометрических уравнений отводится больше времени: как только появляется новая формула, она сразу же используется для решения уравнений или неравенств. То есть в данном случае не формула преобразования является средством для решения тригонометрического уравнения или неравенства, а уравнение выступает как средство закрепления тригонометрических формул. Учебник Мордкович А.Г. Алгебра и начала анализа. 10-11 разбит на 8 глав. В конце изучения каждой главы чётко обозначены основные результаты изучения. Курс изучения математики в 10 классе начинается с изучения главы «Тригонометрические функции». Здесь автор вводит понятия тригонометрической окружности на координатной плоскости, понятия синус и косинус, основные тригонометрические соотношения с ними связанные, решения простейших уравнений по тригонометрической окружности. Как таковые формулы приведения вводятся после изучения тригонометрических функций углового аргумента. Далее рассматриваются свойства и графики тригонометрических функций. Во второй главе «Тригонометрические уравнения» подробно рассматривается решение каждого простейшего тригонометрического уравнения, на основе ранее введенных понятий арксинуса, арккосинуса, арктангенса. В этой же главе рассмотрены такие методы решения: разложение на множители и введение новой переменной; метод решения однородных тригонометрических уравнений. Другие методы решения рассматриваются после изучения третьей главы «Преобразование тригонометрических выражений». Здесь схема изучения выглядит следующим образом: функция → уравнения → преобразования. С точки зрения применения учебник Мордковича удобен для самостоятельного изучения учащимися, т.к. он содержит сильную теоретическую базу. Изложение теоретического материала ведётся очень подробно. В условиях острой нехватки часов для проведения занятий в классе возрастает значение самостоятельной работы учеников с книгой. Опираясь на учебник, учитель прекрасно разберётся в том, что надо рассказать учащимся на уроке, что заставить их запомнить, а что предложить им просто прочесть дома. К недостаткам можно отнести не очень большое количество упражнений по этой теме в самом учебнике. Таким образом, при любом подходе к изучению тригонометрии, роль изучения уравнений и неравенств неизмеримо велика, не зависимо от места их изучения. Ну и как следствие из этого велико и неизмеримо место изучения методов решения и тригонометрических уравнений. Т.к. авторы учебников не уделяют должного внимания обозначению методов решения тригонометрических уравнений и неравенств, попробуем классифицировать уравнения и неравенства, и соответственно методы их решения.
|
||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 761; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.22.249.48 (0.007 с.) |