Методика формирования умений учащихся решать тригонометрические уравнения в курсе алгебры средней школы 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Методика формирования умений учащихся решать тригонометрические уравнения в курсе алгебры средней школы



Говоря об умениях решать тригонометрические уравнения, нужно иметь в виду, что эти умения образуют целый комплекс, в который среди прочих входят следующие:

- умения отыскать на числовой окружности точки, соответствующие заданным числам, выраженных в долях числа (, и т.д.) и не выраженных в долях числа (М(2), М(-7), М(6) и т.д.);

- умение изображать числа точкой числовой окружности и надписывать точки (имеется в виду определять все числа, которые соответствуют данной точке);

- умение изображать числа на числовой окружности по значению одной из тригонометрических функций;

- составлять двойные неравенства для дуг числовой окружности;

- умение провести анализ предложенного уравнения с целью получения оснований для отнесения уравнения к одному из известных видов;

- умение осуществить обоснованный выбор приема решения;

- умение решать простейшие тригонометрические уравнения и иллюстрировать решение с помощью графика, тригонометрического круга;

- умение применять свойства тригонометрических функций при решении уравнений;

- умение выполнять тождественные преобразования тригонометрических выражений, которое, в свою очередь, предполагает умение применять приемы преобразований алгебраических выражений и соответствующие тригонометрические формулы;

- умение решать алгебраические уравнения определенных видов (линейные, квадратные, дробно-рациональные, однородные, сводящиеся к совокупностям алгебраических уравнений указанных видов) и др.

Перечисленные умения формируются в течение длительного времени, рядом из них учащиеся должны владеть, приступая к изучению тригонометрических уравнений. Но рассмотрение приемов решения тригонометрических уравнений, предполагает своего рода перенос этих умений на новое содержание.

Анализ программ по математике для средней школы, учет целей изучения тригонометрических уравнений, а также обязательных результатов обучения, связанных с рассматриваемой темой, приводит к выводу, что указанные умения должны быть усвоены, по крайней мере, на уровне применения «в ситуации по образцу». Предложенные ниже методики предусматривают овладение учащимися умениями решать простейшие тригонометрические уравнения, и знакомство с приемами решения тригонометрических уравнений других видов.

В процессе формирования у школьников умений решать тригонометрические уравнения рекомендуется выделить три этапа:

1. подготовительный,

2. формирование умений решать простейшие тригонометрические уравнения,

3. введение тригонометрических уравнений других видов и установление приемов их решения.

Задачи подготовительного этапа:

- начать формирование у школьников умение использовать тригонометрический круг или график функции для решения уравнения;

- познакомить учащихся с применением свойств тригонометрических функций для решения уравнений вида и т.п.;

- специально обратить внимание школьников на применение различных приемов преобразований выражений при решении тригонометрических уравнений.

Реализовать последний этап рекомендуется в процессе систематизации знаний школьников о свойствах тригонометрических функций. Основным средством могут служить задания, предлагаемые учащимся и выполняемые либо под руководством учителя, либо самостоятельно. Приведем примеры таких заданий:

1) найти все числа отрезка , для которых верно и т.п.,

2) отметить на единичной окружности точки P(t), для которых соответствующие значения t удовлетворяют равенству и т.п.,

3) используя график функции , указать множество чисел, для которых верно

4) решить уравнения

а) ,

б) ,

в) ,

г)

д) ,

5) решить уравнения:

а) ,

б) ,

в) .

Обратим внимание на два последних задания. В основе решения предложенных уравнений, как правило, – применение определений синуса, косинуса числа (либо таких свойств тригонометрических функций, как наличие корней, наличие экстремумов у функций синус и косинус). Выполнение пятого задания предполагает решение совокупностей тригонометрических уравнений рассматриваемого вида (например, последнее уравнение преобразуется следующим образом: , то есть, имеем совокупность уравнений или ). Следует специально обратить внимание учащихся на цель преобразований тригонометрических выражений при решении предложенных уравнений: замена данного выражения, тождественно ему равным и зависящим от одной тригонометрической функции, либо преобразование выражения в произведение линейных множителей относительно тригонометрических функций.

Реализация второго этапа обучения школьников решению тригонометрических уравнений, на котором происходит формирование умений решать простейшие уравнения, предполагает введение понятий «арксинус числа», «арккосинус числа» и т.д., получение общих формул решения простейших тригонометрических уравнений, формирование умений иллюстрировать решение простейших тригонометрических уравнений с помощью графика соответствующей функции или тригонометрического круга.

В настоящее время понятия арксинуса, арккосинуса числа и т.д. вводятся без обращения к функции, которая является обратной по отношению соответственно к функциям синус, косинус и т.д. В качестве основы введения указанных понятий используется так называемая теорема о корне. Указанная теорема применяется и для введения способа решения простейших тригонометрических уравнений. Это требует выделять в процессе получения формул, задающих множества их решений, несколько пунктов:

1) рассматривается промежуток, длина которого равна положительному наименьшему периоду функции, представленной в левой части уравнения и на котором определено понятие арксинуса, арккосинуса или арктангенса числа (в зависимости от предложенного уравнения); если эта функция – синус или косинус, то промежуток разбивается на два;

2) данное уравнение решается на каждом промежутке; основой решения служит теорема о корне, которая конкретизируется для соответствующей тригонометрической функции;

3) на основе свойства периодичности рассматриваемой тригонометрической функции делается вывод о том, что числа или (здесь - решение уравнения, принадлежащее выделенным промежуткам) являются решениями данного уравнения; этот вывод используется для получения формулы решений.

При организации деятельности учащихся на втором этапе обучения решению тригонометрических уравнений полезно ориентироваться на использование второго способа получения общей формулы решений простейшего тригонометрического уравнения.

Во-первых, мотивировать целесообразность получения общего приема решения простейших тригонометрических уравнений можно, обратившись, например, к уравнениям , . Используя знания и умения, приобретенные на подготовительном этапе, учащиеся приведут предложенные уравнения к виду ; , но могут затрудниться в нахождении множества решений каждого из полученных уравнений. Указанных затруднений можно избежать, если обратиться к соответствующей иллюстрации (решение уравнения графически или с помощью тригонометрического круга), но и в этом случае остается открытым вопрос: нельзя ли получить общие формулы для записи множеств решений тригонометрических уравнений вида , ( и ), (), которые дадут возможность сразу фиксировать искомые множества.

Во-вторых, следует обратить внимание учащихся, что получение общих формул для записи множеств решений уравнений указанного вида предполагает введение понятий арксинуса, их арккосинуса числа и т.д. Ввести эти понятия должен учитель, демонстрируя школьникам применение теоремы о корне к каждой из тригонометрических функций на определенном множестве. При этом целесообразно обратиться к графическому способу решения задачи о нахождении множества решений уравнения вида , , на промежутках , и соответственно (решить такую задачу учащиеся могут самостоятельно).

В-третьих, следует провести работу по формированию у учащихся умений находить значения выражений вида , , при данных значениях . С этой целью полезно предложить учащимся задания типа

1) Вычислить: ;

2) Найти значение выражения: и т.п.

Учитель должен обратить внимание учащихся на способ выполнения каждого из заданий, дать соответствующий образец. В первом случае способ задается следующим предписанием: нужно найти такое действительное число , которое удовлетворяет двум условиям. Укажем эти условия, имея в виду пример : это число принадлежит промежутку ; синус искомого числа равен , то есть и . Способ выполнения второго задания основан на применении понятий «арксинус числа», «арккосинус числа» и т.д. Особое внимание следует обратить на выполнение последнего примера этого задания.

В-четвертых, целесообразно провести работу по актуализации приемов преобразования суммы (разности) тригонометрических функций в произведение, обратить внимание школьников на роль этих приемов при решении тригонометрических уравнений. Организовать такую работу можно через самостоятельное выполнение учащимися предложенных учителем заданий. Например,

1)Разложить на множители: .

2)Решить уравнение: . Выполнение учащимися приведенных заданий следует заключить выводом о том приеме, который лежит в основе решения данных уравнений: привести уравнение к виду , разложить левую часть на множители, воспользоваться условием равенства нулю произведения и заменить уравнение равносильной совокупностью уравнений, каждое из уравнений совокупности решить, используя факт о множестве корней соответствующей тригонометрической функции.

В-пятых, начать работу по введению способа решения простейших тригонометрических уравнений следует с постановки вопроса: при каких значениях параметра уравнение вида (, , ) имеет (не имеет) действительного решения и почему. Выделение множества решений параметра, при которых указанное уравнение разрешимо в , дает основание для поиска способа его решения. Заметим, что в практике обучения школьникам достаточно разъяснить суть такого способа для одного из уравнений, например, , . При этом нужно лишь обратить внимание учащихся на то, что если мы заменим число значением функции синус некоторого аргумента, то данное уравнение сводится к уравнению, способ решения которого уже известен. Поэтому, по сути, большая часть работы, связанной с получением формулы решений рассматриваемого уравнения, может быть выполнена учащимися самостоятельно. Учитель выступает в роли консультанта и помогает школьникам сделать обобщения. Получение формул, задающих множества решений уравнений , целесообразно представить учащимся для самостоятельной работы.

В-шестых, от учащихся не рекомендуется требовать обязательной иллюстрации решения каждого простейшего тригонометрического уравнения с помощью графика или тригонометрического круга. Но обратить внимание на ее целесообразность следует (в особенности на применение круга), так как в последующем при решении тригонометрических неравенств соответствующая иллюстрация служит очень удобным средством фиксации множества решений данного неравенства.

Последующее формирование умений учащихся решать простейшие тригонометрические уравнения осуществляется в основном в процессе самостоятельного решения школьниками уравнений, среди которых – уравнения, приводящиеся к простейшим или их совокупностям после выполнения преобразований тригонометрических выражений. В список предлагаемых учащимся уравнений целесообразно включить такие, которые сводятся к виду

и т.п.

Аналогичные задания могут служить средством контроля формирования умений учащихся решать простейшие тригонометрические уравнения.

В связи с реализацией третьего этапа процесса формирования у школьников умений решать тригонометрические уравнения нужно познакомить учащихся с приемами решения тригонометрических уравнений, не являющихся простейшими. Это целесообразно осуществлять по определенной схеме. Обращение к конкретному тригонометрическому уравнению = типичному представителю определенного вида совместный поиск (учитель – учащиеся) приема решения самостоятельный перенос найденного приема на другие уравнения этого же вида обобщение-вывод о характеристиках уравнений рассматриваемого вида и общем приеме решения этих уравнений.

Для того, чтобы продемонстрировать достаточную «условность» отнесения ряда уравнений к определенному виду, можно специально показать школьникам возможность применения различных приемов решения к одному и тому же уравнению. Для этого целесообразно обратиться к «хорошему» уравнению, установить все те приемы, которые могут быть реализованы в процессе его решения, акцентировать внимание учащихся на их особенностях, выделить прием, который в рассматриваемой ситуации оказывается наиболее рациональным.

В качестве такого «хорошего» уравнения можно предложить, например, следующее .

Это уравнение может быть приведено

1) к виду однородного уравнения относительно и

2) к квадратному уравнению относительно с помощью универсальной подстановки

;

3) к простейшему тригонометрическому вида



после применения приема введения вспомогательной переменной.

Сравнение приемов решения уравнения в каждом из указанных случаев свидетельствует, что наиболее рациональным является приведение данного уравнения к простейшему тригонометрическому, так как процесс решения состоит из наименьшего числа операций, выполнение каждой из этих операций не может нарушить равносильность исходного и полученного уравнений, запись ответа более компактна.

 



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 681; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.135.224 (0.023 с.)