Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Система отсчета. Траектория, длина пути, вектор перемещения.

Поиск

Система отсчета. Траектория, длина пути, вектор перемещения.

 

Механика для описания движения тел в зависимости от условий конкретных задач использует разные физические модели. Простейшей моделью является матери­альная точка — тело, обладающее массой, размерами которого в данной задаче мож­но пренебречь. Понятие материальной точ­ки — абстрактное, но его введение облег­чает решение практических задач. Произвольное макроскопическое тело или систему тел можно мысленно разбить на малые взаимодействующие между со­бой части, каждая из которых рассматри­вается как материальная точка. Тогда изучение движения произвольной системы тел сводится к изучению системы матери­альных точек. Абсолютно твер­дым телом называется тело, которое ни при каких условиях не может деформиро­ваться и при всех условиях расстояние между двумя точками (или точнее между двумя частицами) этого тела остается по­стоянным.

Поступа­тельное движение — это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллель­ной своему первоначальному положению. Вращательное движение — это движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.

Положение материальной точки опре­деляется по отношению к какому-либо другому, произвольно выбранному телу, называемому телом отсчета. С ним связы­вается система отсчета — совокупность системы координат и часов, связанных с телом отсчета.

При движении материальной точки ее координаты с течением времени изменяют­ся. В общем случае ее движение определя­ется скалярными уравнениями

эквивалентными векторному уравнению

r = r(t). (1.2)

Уравнения (1.1) (соответственно (1.2)) называются кинематическими уравнения­ми движения материальной точки.

 

Cкорость. Средняя и мгновенная скорости.

Для характеристики движения материаль­ной точки вводится векторная величина — скорость, которой определяется как быстрота движения, так и его направление в данный момент времени.

Пусть материальная точка движется по какой-либо криволинейной траектории так, что в момент времени t ей соответ­ствует радиус-вектор r0 (рис. 3). В течение малого промежутка времени Dt точка прой­дет путь As и получит элементарное (бес­конечно малое) перемещение Dr.

Вектором средней скорости <v > назы­вается отношение приращения Dr радиуса-вектора точки к промежутку времени Dt:

Направление вектора средней скоро­сти совпадает с направлением Dr. При неограниченном уменьшении Dt средняя скорость стремится к предельному значе­нию, которое называется мгновенной ско­ростью v:

По мере уменьшения Dt путь Ds все больше будет приближаться к |Dr|, поэтому модуль мгновенной скорости

Таким образом, модуль мгновенной скоро­сти равен первой производной пути по времени:

(2.2)

При неравномерном движении модуль мгновенной скорости с течением времени изменяется. В данном случае пользуются скалярной величиной (v) — средней ско­ростью неравномерного движения:

В случае равномерного движения число­вое значение мгновенной скорости посто­янно; тогда выражение (2.3) примет вид

Длина пути, пройденного точкой за промежуток времени от t 1до t 2, дается интегралом

 

 

Работа силы. Мощность.

Чтобы количественно характеризовать процесс обмена энергией между взаимодействую­щими телами, в механике вводится по­нятие работы силы.

Если тело движется прямолинейно и на него действует постоянная сила F, которая составляет некоторый угол а с на­правлением перемещения, то работа этой силы равна произведению проекции силы Fs на направление перемещения (Fs = Fcosa), умноженной на перемещение точки приложения силы:

A = Fss = Fs cosa. (11.1)

В общем случае сила может изменять­ся как по модулю, так и по направлению, поэтому формулой (11.1) пользоваться не­льзя. Если, однако, рассмотреть элемен­тарное перемещение dr, то силу F можно считать постоянной, а движение точки ее приложения — прямолинейным. Элемен­тарной работой силы F на перемещении d r называется скалярная величина

= F d r = F cosa• ds=Fsds,

где а — угол между векторами F и d r; ds = |d r | — элементарный путь; Fs — про­екция вектора F на вектор d r (рис. 13).

Работа силы на участке траектории от точки 1 до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сум­ма приводится к интегралу

(11.2)

Для вычисления этого интеграла надо знать зависимость силы Fs от пути s вдоль траектории 12. Пусть эта зависимость представлена графически (рис. 14), тогда искомая работа А определяется на графи­ке площадью закрашенной фигуры. Если, например, тело движется прямолинейно, сила F=const и a=const, то получим

где s — пройденный телом путь (см. также формулу (11.1)).

Единица работы — джоуль (Дж): 1 Дж — работа, совершаемая силой в 1 Н на пути в 1 м (1 Дж = 1 Н•м).

Чтобы охарактеризовать скорость со­вершения работы, вводят понятие мощ­ности: N=da/dt. (11.3)

За время dt сила F совершает работу F d r, и мощность, развиваемая этой силой, в данный момент времени N= F d r /dt= Fv

т. е. равна скалярному произведению век­тора силы на вектор скорости, с которой движется точка приложения этой силы; N — величина скалярная. Единица мощности — ватт (Вт): 1 Вт — мощность, при которой за время 1 с совершается работа в 1 Дж (1 Вт = 1 Дж/с).

 

10. Преобразования Галилея. Механический принцип относительности.

Преобразова́ния Галиле́я — в классической механике преобразования координат и времени при переходе от одной инерциальной системы отсчета к другой. Пусть система к – инерциальная система отсчета и к’. к’ движется равномерно и прямолинейно со скоростью u. Тогда

t

t

x=x’+ y=y’++ z=z’++ t=t’

= = +

= + - правило сложения скоростей

a= = ’ a=a’; если а=0, то и а’=0

Таким образом система отсчета к’, движущийся равномерно и прямолинейно относительно инерциальной системы отсчета к, также будет инерциальной. Во всех инерциальных системах отсчета равенство ускорений а и а’ означает, что законы классической динамики имеют одинаковую формулу.

 

 

Система отсчета. Траектория, длина пути, вектор перемещения.

 

Механика для описания движения тел в зависимости от условий конкретных задач использует разные физические модели. Простейшей моделью является матери­альная точка — тело, обладающее массой, размерами которого в данной задаче мож­но пренебречь. Понятие материальной точ­ки — абстрактное, но его введение облег­чает решение практических задач. Произвольное макроскопическое тело или систему тел можно мысленно разбить на малые взаимодействующие между со­бой части, каждая из которых рассматри­вается как материальная точка. Тогда изучение движения произвольной системы тел сводится к изучению системы матери­альных точек. Абсолютно твер­дым телом называется тело, которое ни при каких условиях не может деформиро­ваться и при всех условиях расстояние между двумя точками (или точнее между двумя частицами) этого тела остается по­стоянным.

Поступа­тельное движение — это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллель­ной своему первоначальному положению. Вращательное движение — это движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.

Положение материальной точки опре­деляется по отношению к какому-либо другому, произвольно выбранному телу, называемому телом отсчета. С ним связы­вается система отсчета — совокупность системы координат и часов, связанных с телом отсчета.

При движении материальной точки ее координаты с течением времени изменяют­ся. В общем случае ее движение определя­ется скалярными уравнениями

эквивалентными векторному уравнению

r = r(t). (1.2)

Уравнения (1.1) (соответственно (1.2)) называются кинематическими уравнения­ми движения материальной точки.

 



Поделиться:


Последнее изменение этой страницы: 2016-09-18; просмотров: 440; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.132.107 (0.009 с.)