Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Занятие 2. Прямая и плоскость в пространстве.↑ ⇐ ПредыдущаяСтр 3 из 3 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
План: 1. Канонические уравнения прямой. 3. Параметрические уравнения прямой. 4. Общее уравнение прямой. 5. Угол между прямыми в пространстве. 6. Расстояние от точки до плоскости. 7. Решение задач. 1. Даны точки M1(-3; 7; -5) и M2(-8; 3; -4). Составить уравнение плоскости, проходящей через точкуM1 и перпендикулярной вектору Ответ: 5x+4y-z-18=0 2. Составить уравнение плоскости, проходящей через три точки M1(1; -3; 4), M2(0; -2; -1), M3(1; 1;-1) Ответ: 15x-5y-4z-14=0 3. Написать уравнение плоскости, проходящей через точки M1(-1; -2; 0) и M2(1; 1; 2) и перпендикулярной плоскости x+2y+2z-4=0 Ответ: 2x-2y+z-2=0 4. Составить уравнение плоскости, проходящей через точку M(-4; 3; -7) параллельно плоскости 6x-5y+4z-15=0 Ответ: 6x-5y+4z+67=0 5. Найти угол между плоскостями и и Ответ: π /3 6. Написать уравнение плоскости, параллельной плоскости x-2y+2z-7=0 и отстоящей от нее на расстоянии, равном 5. Ответ: x-2y+2z+8=0 и x-2y+2z-22=0 7. Составить каноничское уравнение прямой, проходящей через точку A(-7; -3; 2) и перпендикулярной плоскости x-4y-5z+8=0. Ответ: (x+7)/2=(y+3)/(-4)=(z+5)/(-5) 8. Написать уравнение прямой l, проходящей через точки A(-1; 2; 3) и B(5; -2; 1) Ответ: (x+1)/6=(y-2)/(-4)=(z-3)/(-2) 9. Общее уравнение прямой . Привести ее к каноническому виду. Ответ: (x+3)/(-1)=(y-6)/10=z/7 10. Составить параметрические уравнения прямой, проходящей через точку A(-7; -3; 2) и перпендикулярной плоскости x-4y-5z+8=0. Ответ: x=-7+t y=-3-4t z=2-5t 11. Составить уравнение прямой, проходящей через точку M(1; 1; 1) и перпендикулярной векторам и . Ответ: (x-1)/5=(y-1)/(-1)=(z-1)/(-7) 12. Найти углы, образуемые прямой с осями координат. Занятие 3 Поверхности в пространстве План: 1. Сфера. 2. Поверхности вращения. 3. Цилиндрические и конические поверхности. 4. Приведение общего уравнения поверхности второго порядка к каноническому виду. 5. Решение задач.. Занятие 4. Приведение общего уравнения поверхности второго порядка к каноническому виду. План: 1. Приведение общего уравнения поверхности второго порядка к каноническому виду. Контрольная работа
МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОСВОЕНИЮ УЧЕБНОЙ ДИСЦИПЛИНЫ «ЛИНЕЙНАЯ АЛГЕБРА»
Математическое образование студента специальности «Прикладная информатика (в экономике)» начинается с изучения трех основных дисциплин: математического анализа, аналитической геометрии и высшей алгебры. Эти дисциплины имеют ряд точек соприкосновения и вместе составляют фундамент современной математической науки. Высшая алгебра представляет собой далеко идущее обобщение школьного курса элементарной алгебры. Одна из центральных тем высшей алгебры - изучение произвольных систем уравнений первой степени. Для решения сложных систем разработан аппарат теории определителей, теории матриц. С другой стороны, изучение систем линейных уравнений потребовало введение и изучение векторных и линейных пространств. Линейная алгебра посвященная, в основном, теории матриц и связанной с ней теорией линейных преобразований векторных пространств, включает в себя также теорию форм, теорию инвариантов и тензорную алгебру, играющую важную роль в дифференциальной геометрии (этот раздел алгебры не входит в программу нашего изучения). Истинным объектом алгебраического исследования следует считать алгебраические операции, подобные сложению или умножению чисел, но производимые, возможно, не над числами. Учась в школе, вам приходилось встречаться с операцией сложения сил. Математические дисциплины, изучаемые вами уже на первом курсе, требуют многочисленные алгебраические операции - сложение и умножение матриц, функций, операции над преобразованиями пространства, над векторами и т. д. Эти операции обычно похожи на операции над числами и носят те же названия, но иногда некоторые их свойства оказываются утерянными. Так, очень часто операции оказываются некоммутативными, а иногда неассоциативными. Систематическому изучению подвергаются наиболее важные типы алгебраических систем, для которых определены некоторые алгебраические операции. Таковы, в частности, поля, группы, подгруппы. В последние десятилетия возникла и далеко развилась новая область алгебры – теория структур. Структурой называется алгебраическая система с двумя операциями – сложением и умножением. Эти операции должны быть коммутативны и ассоциативны, а также удовлетворять следующим требованиям: и сумма, и произведение с самим собой должны равняться самому этому элементу. Теория структур имеет тесную связь с теорией групп, с теорией множеств, с геометрией. Мы будем изучать аналитическую геометрию – раздел геометрии, в котором свойства геометрических объектов изучаются методами алгебры. Поясним эти слова. Геометрия, как и другие разделы математики, строится так: сначала формулируются исходные положения – аксиомы, а затем из них выводятся логические следствия – теоремы. Эта часть геометрии называется элементарной, ее вы изучали в школе. Следующий этап в построении геометрии состоит в расширении аппарата путем привлечения средств других разделов математики, в первую очередь алгебры и математического анализа. Делается это так: вводится система координат, в результате чего каждая точка описывается набором чисел, а геометрическая фигура – уравнением и неравенством. Благодаря этому изучение геометрических объектов может быть в ряде случаев сведено к изучению уравнений. Изучение же свойств уравнений осуществляется методами алгебры и математического анализа. Так появились новые разделы геометрии – аналитическая и дифференциальная. Высшая алгебра и аналитическая геометрия требуют глубокого понимания основных понятий, знания определений, теорем, уравнений, описывающих ту или иную геометрическую фигуру, поэтому важно уметь работать с математическим текстом. При работе с математическим текстом придерживайтесь следующих рекомендаций:
· Прочитайте текст не менее двух раз с карандашом в руках, делая выписки основных моментов. · Попробуйте воспроизвести текст, закрыв книгу. · Просмотрите текст еще раз. · Воспроизведите материал, делая вывод формул, доказательства теорем самостоятельно. Балльно-рейтинговая схема предполагает, что студент для получения экзаменационной оценки по данной дисциплине должен набрать до 100 баллов, независимо от формы итогового контроля. Максимум 100 баллов студент может набрать в ходе семестра на аудиторных занятиях, промежуточном контроле и за решения контрольных работ и типовых расчетов. Баллы присуждаются по результатам работы на семинарских занятиях, за посещение в ходе семестра лекций. Максимальное количество баллов за работу на семинаре, можно получить, демонстрируя хорошее знание теоретического материала и умение применять их при решении практических задач. Ответ на экзамене дает студенту от 0 до 40 баллов. Студент, набравший менее 60 баллов, получает итоговую оценку – неудовлетворительно, от 61 до 75 – удовлетворительно, от 76 до 90 - хорошо, 91 и выше баллов - отлично.
|
||||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 518; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.146.178.220 (0.011 с.) |