Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Скважинные гидропоршневые двигатели, насосы и золотникиСодержание книги
Поиск на нашем сайте
Погружной агрегат состоит из насоса и двигателя с золотниковым распределением потока жидкости. Двигатель может быть дифференциальным или двустороннего действия, а насос — дифференциальным, одно- или двустороннего действия. Учитывая различное расположение рабочих полостей в двигательной и насосной частях, возможно создание более 900 схем погружных агрегатов гидропоршневых насосов. Число схем, реализованных в серийных или опытных образцах, невелико. В основном это агрегаты с двигателем и насосом двустороннего или дифференциального действия. Наиболее простое конструктивное решение агрегата возможно при двигателе и насосе дифференциального действия, агрегаты двустороннего действия сложнее, но у них более высокий КПД и более плавный режим работы (скорости движения поршней вверх и вниз близки). Рассмотрим наиболее простой агрегат дифференциального действия, разработанный в ОКБ БН по схеме, предложенной Л. Г. Чичеровым, В. М. Калининым, и др. конструкторами [1]. Погружной агрегат (рис. 6.4) состоит из поршня и цилиндра двигателя 1, штока 2, соединяющего поршень двигателя с поршнем насоса, золотника 3, поршня и цилиндра насоса 4. По каналу А рабочая жидкость поступает под поршень двигателя в полость Б, в которой создается постоянное давление рабочей по лости. Рис. 6.4. Схема дифференциального погружного агрегата
При положении поршней и золотника, указанном на рисунке, полости Б и В (под и над поршнем двигателя) соединены друг с другом. Шток нижним своим концом выходит в полость насоса, где давление равно давлению столба откачиваемой жидкости. Давление рабочей жидкости больше, чем давление столба откачиваемой жидкости. На поршень двигателя сверху и снизу действует одинаковое давление рабочей жидкости. На поршень насоса сверху и снизу действует давление столба откачиваемой жидкости. На шток сверху действует давление рабочей жидкости, а снизу — откачиваемой жидкости. Таким образом, создается сила, действующая на шток сверху вниз и продвигающая всю поршневую группу вниз. Происходит переток отбираемой жидкости из полости Д через нагнетательный клапан в полость Г над поршнем насоса. Всасывающий клапан насоса в это время закрыт. При этом часть откачиваемой жидкости в объеме штока, входящего в цилиндр насоса, выталкивается в подъемный канал. В крайнем нижнем положении поршней продольная канавка на верхней части штока соединяет полость Б с камерой под золотником Е. Поскольку нижняя головка золотника диаметром больше, чем верхняя, а давление над и под золотником одинаково и равно давлению рабочей жидкости, золотник под действием разности сил (произведение давления на площадь) поднимается в верхнее положение и сообщает каналы Б и С. Таким образом, полость Б сообщается с полостью Г, над поршнем двигателя устанавливается давление столба откачиваемой жидкости. Под поршнем двигателя, в полости Б, остается постоянное давление рабочей жидкости. В результате на поршень двигателя начинает действовать сила, обусловленная разностью давлений в полостях Б и В, и поршневая группа начинает движение вверх. У насоса закрывается нагнетательный и открывается всасывающий клапаны. Происходит всасывание жидкости из полости скважины в цилиндр насоса (в полость Д). В крайнем верхнем положении продольная канавка, расположенная в нижней части штока, соединяет полость Е у золотника с полостью Г. Давление под золотником падает до давления столба откачиваемой жидкости. Над золотником действует высокое давление рабочей жидкости. Под действием перепада давления золотник передвигается в нижнее положение, показанное на рис. 6.4. После этого рабочий цикл погружного агрегата повторяется. Конструкция погружного агрегата имеет следующие особенности. Поршни двигателя и насоса выполнены из стали с покрытием их поверхности хромом. Слой хрома толщиной около 0,07 мм отличается высокой твердостью и хорошей износоустойчивостью. Напомним, что обычное декоративное покрытие имеет меньшую толщину хрома (около 0,012 — 0,02 мм). Цилиндры двигателя и насоса составлены из стальных втулок (сталь марки 38ХМЮА) с азотированной внутренней поверхностью. Образующиеся при азотировании карбиды позволяют повысить твердость поверхности втулок до 80 по шкале HRA. В результате в гидропоршневых насосах используется наиболее износоустойчивая пара трения. Такие же пары используются в штанговых насосах при особо тяжелых условиях их эксплуатации. Уплотнения подвижных деталей в агрегате щелевые. Они расположены между золотником и штоком, золотником и корпусом золотника, корпусом под золотники и штоком. Каналы А, Б, С при сбрасываемом погружном агрегате размещены в седле, спускаемом на НКТ. Это позволяет увеличить диаметры поршней агрегатов. Разобщение каналов осуществляется резиновыми манжетами, размещенными на погружном агрегате. Клапаны насосной части шаровые (шар и седло). Они те же, что и в штанговых насосах (см. гл. 2 настоящей книги). Длина хода поршней у погружных агрегатов гидропоршневых насосов достигает 1 м, число ходов в минуту — 30—60. Погружной агрегат, сбрасываемый в НКТ диаметром 73 мм, имеет внешний диаметр 58 мм и длину около 4 м. Скважина для гидропоршневых насосных установок оборудуется двумя колоннами НКТ, спускаемыми концентрично или параллельно, или одной колонной НКТ и пакером, уплотняющим пространство между НКТ и обсадной колонной. Таким образом, образуются два канала — один для подъема смеси добываемой жидкости и отработанной рабочей жидкости (НКТ или пространство между НКТ и обсадной колонной), другой — для рабочей жидкости (НКТ). В случае использования замкнутой системы циркуляции рабочей жидкости требуется спуск еще одной колонны НКТ. При трубном варианте погружной агрегат спускается в скважину на НКТ. При сбрасываемом агрегате на НКТ спускается седло для установки агрегата и под ним обратный шаровой клапан, позволяющий осуществить обратный поток рабочей жидкости при подъеме сбрасываемого погружного агрегата. Опыт работы в нашей стране с отечественными установками гидропоршневых насосов показал, что сбрасываемые погружные агрегаты могут работать в среднем с межремонтным периодом около 9 месяцев (270 сут). Подъем их производился без подъема труб — жидкостью. НКТ и пакеры не поднимались по несколько лет. Ожидалось, что подъем добываемой жидкости по обсадной колонне (при установке пакера) может привести к отложению парафина на обсадных трубах и осложнениям при подъеме НКТ и пакера. Однако опыт эксплуатации показал несостоятельность такого опасения. Смешивание добытой и рабочей жидкостей при подъеме их по обсадной колонне приводило к снижению относительного содержания газа, а также смол и парафинов в смеси и к незначительному отложению их на обсадных трубах. Такие результаты были получены на месторождениях Башкирии, Татарии и Самарской области. Необходимо учитывать, что большее, чем в этих районах, содержание в добываемой жидкости смол и парафинов может привести к худшим результатам. Поэтому в каждом частном случае необходимы анализ условий эксплуатации и обоснованный выбор схем оборудования скважин. Наземное оборудование состоит из оборудования устья, силового насосного агрегата, оборудования для подготовки рабочей жидкости, регулирующей и регистрирующей аппаратуры. Оборудование устья имеет детали для подвески НКТ на колонной головке, многоходовой кран для направления рабочей и отбираемой жидкостей в соответствующие каналы при спуске, работе и подъеме погружного агрегата, пружинного ловителя, свободно сбрасываемого агрегата и мачты с талевой системой с ручным приводом для извлечения агрегата из скважины или спуска его в скважину. Силовой насосный агрегат состоит из насоса и его привода. Наиболее часто применяется трехплунжерный насос. В нашей стране применяется насос с горизонтальным расположением цилиндров, в США некоторые фирмы используют насосы с вертикальным расположением цилиндров. Увеличенная скорость ходов плунжеров (около 400 в минуту) позволяет уменьшить габариты насосов. Насосы развивают давление от 16 до 30 МПа. Подача насосов достигает десятков литров в секунду. Параметры насосов зависят от характеристики двигателя погружного агрегата и от того, является ли насос приводом индивидуальной установки (предназначенной для одной скважины) или групповой установки (для нескольких скважин). Насосы подают к скважине жидкость, обычно нефть, очищенную от механических примесей и отделенную от воды и газа. Есть примеры использования в качестве рабочей жидкости воды с присадками, обеспечивающими смазку трущихся частей оборудования. Приводом насоса чаще всего служит электродвигатель. В некоторых случаях выгодно применять газомотор, работающий на нефтяном газе. Это экономично, поскольку применяется дешевое топливо и, с другой стороны, газомотор позволяет легко изменять частоту вращения приводного вала силового насоса и регулировать таким образом его подачу. Оборудование для подготовки рабочей жидкости (при незамкнутой ее циркуляции) имеет сепараторы для отделения газа, воды и механических примесей, отстойники, дозировочные насосы, подогреватели. Обычно применяются сепараторы объемного типа, вертикальные или горизонтальные, с подогревом поступающей смеси для лучшей деэмульсации и снижения вязкости смеси. После объемных сепараторов устанавливают батарею циклонных сепараторов для более тщательной очистки рабочей жидкости от газа и механических примесей. В некоторых установках применяют отстойники большой емкости. Для улучшения деэмульсации смеси рабочей и добытой жидкостей и отделения воды в смесь иногда подают реагенты-деэмульгаторы. Деэмульгаторы подаются в небольших объемах (десятки граммов на 1 м3 жидкости) дозировочными насосами с малыми подачами. Это обычно одноплунжерные насосы, имеющие регулируемую подачу. В качестве деэмульгаторов можно использовать неионогенный деэмульгатор дисолван и ПАВы различных марок. В установках гидропоршневых насосов имеется возможность подачи деэмульгатора не только в поверхностную систему, но и в подготовленную рабочую жидкость, направляемую в скважину. В этом случае действие деэмульгатора проявляется уже при выходе жидкости из погружного двигателя в НКТ. Предупреждается образование стойких высоковязких эмульсий, снижается гидравлическое сопротивление движению смеси в трубах, облегчается отделение воды в системе подготовки рабочей жидкости и при подготовке товарной нефти. Деэмульсация при подготовке рабочей жидкости и отделение воды облегчаются при подогреве жидкости. Подогреватели могут быть с теплоносителем в виде пара или горячей воды или электрическими в виде специальных лент, в изоляции которых уложены электропроводящие жилы с большим сопротивлением (из константана, нихрома и т.д.). Подогрев осуществляется в отстойниках или сепараторах, или в линиях, подводящих смесь от скважины к этим устройствам. Система подготовки рабочей жидкости может включать все перечисленные части, а может быть и значительно упрощена в зависимости от конкретной характеристики добываемой жидкости и климатических условий. Опыт эксплуатации гидропоршневых насосов в нашей стране показал, что для нормальной работы погружного агрегата достаточно снизить содержание воды в рабочей жидкости до 5 % и механических примесей до 0,5—0,3 г/л. Контроль за режимом работы установки гидропоршневого насоса, поддержание этого режима или изменение его осуществляются аппаратурой, включающей расходомер, манометр, стабилизатор режима, регулирующие вентили. В агрегатах одностороннего действия (рис. 6.5, а) шток с двумя поршнями совершает возвратно-поступательное движение в результате попеременной подачи жидкости из напорного трубопровода то в полость 3, то 4. Жидкость подается золотниковым устройством. В результате в насосе одинарного действия при ходе поршня вверх пластовая жидкость попадает через всасывающий клапан 1 в полость 6, а при ходе поршня вниз вытесняется через нагнетательный клапан 2 в напорный трубопровод. Клапаны 1 и 2 самодействующие, обычно шарикового типа [2, 3].
Рис. 6.5. Схемы скважинных агрегатов одностороннего, двустороннего и дифференциального действия (слева-направо).
Полость 5 соединена с затрубным пространством с помощью отверстия, и при перемещении поршня вверх и вниз жидкость может свободно циркулировать. В агрегатах двустороннего действия при перемещении поршня насоса вверх пластовая жидкость попадает через клапан 1 в полость и вытесняется из полости 5 через клапан 2. При ходе поршня вниз пластовая жидкость вытесняется из полости 6 через клапан 2 и поступает в полость 5 через клапан 1. Таким образом, при каждом ходе поршня жидкость подается в напорный трубопровод. В агрегатах с насосом дифференциального действия поршень насоса выполнен сквозным с расположенным в нем нагнетательным клапаном 2. При ходе поршня вниз всасывающий клапан 1 закрыт, из полостей 5 и 6 в напорный трубопровод вытесняется объем жидкости, равный объему штока, находящегося в полостях, при ходе поршня вверх нагнетательный клапан 2 закрыт, а всасывающий 1 открыт. В результате пластовая жидкость вытесняется из полости 5 в напорный трубопровод и поступает в полость 6 [2, 3]. В нижней части труб устанавливается специальное седло, а на устье — ловитель и специальная обвязка, позволяющая изменять направления потоков в колоннах насосно-компрессор-ных труб. Для спуска агрегата колонны труб заполняются жидкостью, после чего спускается агрегат, который под действием потока жидкости, подаваемой силовым насосом, опускается, устанавливается на седле и фиксируется замком. После его установки поток жидкости начинает проходить через агрегат, и последний откачивает пластовую жидкость. Время спуска агрегата на седло, момент его установки и начало работы контролируются по показаниям манометра, установленного на нагнетательном патрубке силового насоса. Для подъема агрегата направление потоков жидкости в колоннах труб изменяется на противоположное посредством переключения четырехходового крана. При этом давление жидкости, действующее на агрегат снизу, создает усилие, направленное вверх, которое извлекает агрегат из замка и перемещает его вверх к устью скважины. Агрегат после достижения им устья захватывается специальным ловителем. При этом силовой насос, подающий рабочую жидкость, автоматически отключается, и операция заканчивается. Момент выпрессовки агрегата из замка и время подъема его на поверхность контролируются манометром. Помимо перечисленных отличительных признаков установки отличаются конструктивным исполнением и взаимным расположением каналов для подвода и отвода жидкости от ГПНА. В качестве каналов могут использоваться специальные колонны НКТ либо внутренняя полость эксплуатационной колонны, а относительно друг друга колонны могут располагаться концентрично или же параллельно. В зависимости от типа гидравлической схемы установки и типа применяемого ГПНА конструкции нижней части внутрискважинного оборудования могут быть различными. При использовании открытой гидравлической схемы применяют следующие варианты конструкций (рис. 6.6). Рис. 6.6. Оборудования скважин ГПНУ с открытой схемой циркуляции рабочей жидкости
Фиксированный ГПНА с двумя концентрично расположенными колоннами труб (рис. 6.6, а). В этом случае ГПНА 4 спускается на центральной колонне труб 1 а его нижняя часть с уплотнением устанавливается на опорном конусе 5, который укреплен на колонне НКТ 2 большого диаметра. Рабочая жидкость подводится к гидродвигателю по центральной колонне НКТ 1, а пластовая жидкость в смеси с рабочей отводится по концентричному каналу, образованному колоннами НКТ 1 и 2. Фиксированный ГПНА (рис. 6.6, б) с одной колонной НКТ. ГПНА опускается на колонне НКТ 1 и устанавливается нижней частью на пакере 6, расположенном в эксплуатационной колонне 3. Как и в предыдущей схеме, рабочая жидкость подводится по центральной НКТ 1, а поднимается по кольцевому каналу между НКТ 1 и эксплуатационной колонной 3. Свободный ГПНА с двумя параллельными колоннами НКТ (рис. 6.6, в). Агрегат Испускается в скважину по НКТ большого диаметра 1, по которой к нему подводится рабочая жидкость и в нижней части которой установлены седло с замком и обратный клапан 10. Параллельная колонна труб 2 служит для подъема смеси пластовой и рабочей жидкостей. Свободный ГПНА с одной колонной НКТ (рис. 6.6, г). Агрегат 8располагается в колонне НКТ 1, в нижней части 9которой установлены седло с замком и обратный клапан 10. Хвостовик колонны фиксируется в отверстии пакера 7, установленного в жсплуатационной колонне 3. Потоки жидкостей аналогичны потокам схемы (рис. 6.6, б). При подъеме свободного агрегата в схеме поток жидкости в канале, служащем для подъема пластовой жидкости, изменяется на противоположный, обратный клапан 10 закрывается, и агрегат перемещается вверх. Мощность привода которых в большинстве случаев составляет от 14 до 300 кВт. Для подбора агрегата, соответствующего требуемому режиму эксплуатации скважины, выпускаются насосы многих типоразмеров, причем каждый из них имеет наборы плунжеров с уплотнениями различных диаметров (от 30 до 95 мм), позволяющими ступенчато изменять подачу насосов (от 130 до 1700 л/мин) и обеспечивать максимальное давление до 35,0 МПа. Число ходов плунжеров составляет 300—450 в минуту. Для уменьшения числа оборотов вала насоса применяются понижающие редукторы. Наибольшее число типоразмеров оборудования, в том числе более 70 типоразмеров гидропоршневых насосов, представляет фирма Kobe. В табл. 6.1 приведены характеристики некоторых гидропоршневых насосных агрегатов этой фирмы. Таблица 6.1
|
||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 747; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.22.34 (0.009 с.) |