Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Принцип работы системы зажиганияСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Контактная система зажигания При включенном выключателе зажигания и сомкнутых контактах прерывателя ток от аккумуляторной батареи или генератора поступает на первичную обмотку катушки зажигания, в результате чего образуется магнитное поле. При размыкании контактов прерывателя ток в первичной обмотке исчезает, исчезает и магнитное поле вокруг нее. Исчезающий магнитный поток пересекает витки вторичной и первичной обмоток, вызывая возникновение в каждом из витков электродвижущей силы (ЭДС). Ввиду большого количества витков вторичной обмотки, соединенных последовательно между собой, общее напряжение на ее концах достигает 20 — 24 кВ. ЭДС вторичной обмотки будет тем выше, чем больше скорость исчезновения магнитного потока. От катушки зажигания по проводам высокого напряжения через распределитель ток высокого напряжения поступает к искровым свечам зажигания. В результате между электродами свечей возникает искровой разряд, воспламеняющий рабочую смесь. Контактно-транзисторная система зажигания При включенном выключателе зажигания после замыкания контактов прерывателя транзистор открывается, так как потенциал его базы становится ниже потенциала эмиттера, и по первичной обмотке катушки зажигания будет протекать ток. В момент размыкания контактов прерывателя транзистор запирается. Ток в цепи первичной обмотки резко уменьшается, вызывая создание высокого напряжения во вторичной обмотке катушки зажигания, импульсы которого направляются к свечам зажигания распределителем. Бесконтактная система зажигания Электронно-механическое устройство датчика-распределителя при включенном зажигании и работающем двигателе выдает импульсы напряжения на электронный коммутатор, который преобразует их в прерывистые импульсы тока в первичной обмотке катушки зажигания. В момент прерывания импульса тока в первичной обмотке во вторичной обмотке индуктируется ток высокого напряжения. Ток высокого напряжения от катушки зажигания по проводу подается на центральную клемму крышки распределителя и далее через угольный контакт, токоразносную пластину ротора, боковые клеммы подается на свечи зажигания и искровым разрядом воспламеняет рабочую смесь в цилиндрах двигателя.
Общая схема трансмиссии Общая схема трансмиссии определяется компоновкой автомобиля, числом и расположением ведущих мостов, видом трансмиссии. К узлам и агрегатам трансмиссии в общем случае относятся: - сцепление; - коробка передач; - главная передача; - дифференциал; - приводные валы — полуоси. Для легковых автомобилей по расположению силового агрегата и ведущего моста характерны три компоновочные схемы: 1. Классическая схема. Силовой агрегат расположен впереди, ведущий мост — задний, его привод осуществляется через карданные валы и главную передачу с дифференциалом. 2. Переднеприводная схема. Двигатель, сцепление, коробка передач, главная передача и дифференциал расположены впереди, поперечно или продольно осевой линии автомобиля, ведущий мост — передний. 3. Схема с задним расположением двигателя. Двигатель, сцепление, коробка передач, главная передача и дифференциал расположены сзади, продольно или поперечно относительно осевой линии автомобиля, ведущий мост — задний. Компоновочные схемы грузовых автомобилей характеризуются расположением двигателя и кабины: 1. Капотная компоновка. Двигатель расположен над передним мостом, кабина — за двигателем. 2. Короткокапотная компоновка. Двигатель — над передним мостом, кабина частично надвинута на двигатель. 3. Кабина над двигателем. Двигатель — над передним мостом, кабина — над двигателем. 4. Передняя кабина. Двигатель — сзади переднего моста, кабина максимально сдвинута вперед. Автомобили с механической трансмиссией имеют классическую классическую схему компоновки. Двигатель, сцепление, коробка передач расположены спереди. Крутящий момент передается карданной передачей на задний ведущий мост. Трансмиссия переднеприводного автомобиля. Особенностью этой схемы компоновки является выполнение ведущим переднего моста с управляемыми колесами, что потребовало создания единого силового агрегата, включающего в себя: - двигатель; - сцепление; - коробку передач; - главную передачу и дифференциал; - карданные шарниры равных угловых скоростей, соединенные с передними управляемыми колесами. Трансмиссия автомобиля с передним и задним ведущими мостами. Отличительной особенностью этой схемы трансмиссии является применение раздаточной коробки, где крутящий момент передается к обоим ведущим мостам через промежуточные карданные валы. Раздаточная коробка имеет устройство для включения и выключения переднего моста и дополнительную понижающую передачу, позволяющую значительно увеличить крутящий момент на колесах для обеспечения повышенной проходимости автомобиля. Схема механической трансмиссии грузовых трехосных автомобилей. На этих автомобилях средний и задний мосты являются ведущими. Крутящий момент от коробки передач к ним передается одним карданным валом. В главной передаче среднего моста предусмотрены межосевой дифференциал и проходной вал, передающий крутящий момент на карданный вал привода заднего моста. Передача крутящего момента к ведущим мостам на трехосных автомобилях может осуществляться и от раздаточной коробки. Схема гидромеханической трансмиссии. Здесь в едином блоке с двигателем выполнена гидромеханическая коробка передач, крутящий момент от которой передается через карданный вал ведущим колесам по обычной схеме. Схема гидромеханической трансмиссии. Дизельный двигатель приводит в действие генератор постоянного тока. Напряжение постоянного тока по проводам передается к электродвигателям, которые смонтированы в ободах колес.
Устройство сцепления и привода Сцепление служит для передачи крутящего момента от двигателя, кратковременного отсоединения двигателя от коробки передач и плавного их соединения при переключении передач и трогании автомобиля с места. Сцепление состоит из механизма и привода его выключения. Наибольшее распространение получило однодисковое сцепление фрикционного типа. Основными деталями механизма сцепления являются ведомый диск, закрепленный на ведущем колесе коробки передач, нажимной (ведущий) диск с пружинами, который жестко прикреплен к маховику коленчатого вала двигателя. Механический привод выключения сцепления наиболее прост по конструкции и удобен в эксплуатации. Применяется на большинстве отечественных грузовых автомобилей. Механический привод выключения сцепления состоит из: - педали; - возвратной пружины; - валика с рычагом; - тяги; - рычага вилки выключения сцепления; - вилки; - муфты с упорным шариковым подшипником; - оттяжной пружины. Гидравлический привод выключения сцепления обеспечивает более полное включение сцепления в сравнении с механическим приводом. Допускает расположение педали привода независимо от места установки механизма сцепления. Гидропривод состоит из: - педали сцепления; - оттяжной пружины; - главного цилиндра; - рабочего цилиндра; - толкателя; - вилки выключения сцепления; - трубопроводов.
Принцип работы сцепления Принцип работы механизма сцепления основан на использовании сил трения соединяющихся поверхностей. Диски сжимаются пружинами ведущего (нажимного) диска, и в результате возникновения между ними силы трения крутящий момент передается от коленчатого вала двигателя к ведущему валу коробки передач. Ведущий и ведомый диски сцепления постоянно прижаты пружинами друг к другу и разжимаются только на короткое время под воздействием привода выключения сцепления при переключении передач или торможении автомобиля. Плавность включения сцепления обеспечивается за счет проскальзывания дисков до момента полного прижатия их друг к другу. Механический привод выключения сцепления Нажатием на педаль все детали привода приходят во взаимодействие, в результате чего упорный подшипник муфты нажимает на внутренние концы рычагов выключения, нажимной диск отводится, а ведомый освобождается от усилия зажимающих пружин и сцепление выключается. При включении сцепления педаль отпускают, муфта с упорным подшипником занимает исходное положение, освобождая рычаги выключения, ведущий диск под действием пружин прижимает ведомый диск к маховику и сцепление включается. Гидравлический привод выключения сцепления Перемещение поршня главного цилиндра при нажатии на педаль вызывает перетекание жидкости по трубопроводу и повышение давления в рабочем цилиндре. В результате поршень рабочего цилиндра перемещается и через толкатель (шток) воздействует на вилку выключения сцепления, которая в свою очередь перемещает выжимной (упорный) подшипник и выключает сцепление. Возврат педали в исходное положение происходит под действием оттяжной пружины, толкатель рабочего цилиндра освобождается, сцепление включается.
Устройство и виды КПП Коробкой передач называется механизм трансмиссии, изменяющий при движении автомобиля соотношение между угловыми скоростями вращения коленчатого вала двигателя и ведущих колес. Коробка передач служит для изменения крутящего момента на ведущих колесах автомобиля, длительного разъединения двигателя и трансмиссии и получения заднего хода. Крутящий момент на ведущих колесах необходимо изменять в соответствии с дорожными условиями для обеспечения оптимальной скорости и проходимости автомобиля, а также для наиболее экономичной работы двигателя. Двигатель и трансмиссию разъединяют на продолжительное время при работе двигателя на холостом ходу. Крутящий момент на ведущих колесах и скорость автомобиля изменяют путем увеличения или уменьшения передаточного числа коробки передач, представляющего собой отношение угловой скорости вращения ведущего вала к угловой скорости вращения ведомого вала. В зависимости от типа и назначения автомобилей на них применяются различные типы коробок передач. На большинстве легковых и грузовых автомобилей сейчас применяют ступенчатые коробки передач, но все большее распространение в настоящее время на легковых автомобилях и автобусах получают гидромеханические коробки передач, состоящие из гидротрансформатора и ступенчатой механической коробки передач.
В общем случае коробка передач состоит из: - картера; - ведущего вала с шестерней; - ведомого вала; - промежуточного вала; - оси шестерни заднего хода; - блока передвижных шестерен; - механизма переключения передач.
Принцип работы КПП В постоянном зацеплении находятся шестерни ведущего и промежуточного валов, шестерни второй и третьей передач промежуточного и ведомого валов. Передачи включают перемещением шестерни первой передачи и синхронизатора, а задний ход включается перемещением блока, состоящего из двух шестерен, расположенных на отдельной оси. Первая передача включается перемещением назад шестерни первой передачи ведомого вала. Ее наружные зубья входят в зацепление с шестерней первой передачи промежуточного нала.
Вторая передача включается перемещением шестерни первой передачи вперед. Ее внутренние зубья входят в зацепление с торцевым венцом шестерни постоянного зацепления второй передачи, при этом жестко соединяясь с ведомым валом (рис. 62).
Третья передача включается перемещением назад муфты синхронизатора. Внутренние зубья муфты входят в зацепление с торцовым венцом шестерни постоянного зацепления третьей передачи, жестко соединяя ее с ведомым валом (рис. 3).
Четвертая передача включается перемещением вперед муфты синхронизатора, ее зубья входят в зацепление с венцом ведущего вала, соединяя ведущий и ведомый валы. Промежуточный вал в передаче крутящего момента не участвует (рис 4).
Задний ход включается перемещением блока шестерен заднего хода на оси до ввода в зацепление их с шестернями первой передачи промежуточного и ведомого валов, (рис. 5).
Включение третьей и четвертой передач осуществляется при перемещении синхронизатора, который устроен следующим образом. На наружной поверхности ступицы, имеющей зубья и пазы, установлена скользящая муфта, связанная с вилкой переключения передач. В пазах ступицы расположены ползуны, которые прижимаются пружинными кольцами к зубьям скользящей муфты. Два кольца с коническими поверхностями при включении передач соприкасаются с соответствующими коническими поверхностями шестерен ведущего вала и включаемой передачи. Вследствие возникающего трения скорости вращения шестерни и муфты уравниваются. Затем происходит включение соответствующей передачи зубчатой муфтой синхронизатора.
|
||||||||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 746; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.84.179 (0.008 с.) |