Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Электрический заряд и его свойства. Дискретность. Элементарный электрический заряд. Закон сохранения электрического заряда.

Поиск

Электрический заряд и его свойства. Дискретность. Элементарный электрический заряд. Закон сохранения электрического заряда.

Электрический заряд – это физическая величина, характеризующая электромагнитное взаимодействие. Тело заряжено отрицательно, если на нем избыток электронов, положительно – дефицит.

Перечислим свойства зарядов

1. Существуют заряды двух видов; отрицательные и положительные. Разноименные заряды притягиваются, одноименные отталкиваются. Носителем элементарного, т.е. наименьшего, отрицательного заряда является электрон, заряд которого qe= -1,6*10-19Кл, а масса mе=9,1*10-31кг. Носителем элементарного положительного заряда является протон qр=+1,6*10-19Кл, масса mр=1,67*10-27кг.

2. Электрический заряд имеет дискретную природу. Это означает, что заряд любого тела кратен заряду электрона q=Nqe, где N – целое число. Однако мы, как правило, не замечаем дискретности заряда, так как элементарный заряд очень мал.

3. В изолированной системе, т.е. в системе, тела которой не обмениваются зарядами с внешними по отношению к ней телами, алгебраическая сумма зарядов сохраняется (закон сохранения заряда).

4. Эл. заряд всегда можно передать от одного тела к другому.

5. Единица заряда в СИ – кулон (Кл). По определению, 1 кулон равен заряду, протекающему через поперечное сечение проводника за 1 с при силе тока 1 А.

6. Закон сохранения электрического заряда.

Внутри замкнутой системы при любых взаимодействиях алгебраическая сумма электрических зарядов остается постоянной:

Изолированной (или замкнутой) системой мы будем называть систему тел, в которую не вводятся извне и не выводятся из нее электрические заряды.

Нигде и никогда в природе не возникает и не исчезает электрический заряд одного знака. Появление положительного электрического заряда всегда сопровождается появлением равного по модулю отрицательного заряда. Ни положительный, ни отрицательный заряд не могут исчезнуть в отдельности, они могут лишь взаимно нейтрализовать друг друга, если равны по модулю.

Так элементарные частицы способны превращаться друг в друга. Но всегда при рождении заряженных частиц наблюдается появление пары частиц с зарядами противоположного знака. Может наблюдаться и одновременное рождение нескольких таких пар. Исчезают заряженные частицы, превращаясь в нейтральные, тоже только парами. Все эти факты не оставляют сомнений в строгом выполнении закона сохранения электрического заряда.

Элементарный заряд - минимальный заряд, разделить который невозможно.

Электрический ток. Условия существования эл.тока. Сила тока и плотность тока

Электрическим током называется направленное движение заряженных частиц. За направление электрического тока условились считать направление движения положительно заряженных частиц. Для продолжительного существования электрического тока в замкнутой цепи необходимо выполнение следующих условий:

-наличие свободных заряженных частиц (носителей тока);

-наличие электрического поля, силы которого, действуя на заряженные частицы, заставляют их двигаться упорядоченно;

- наличие источника тока, внутри которого сторонние силы перемещают свободные заряды против электростатических (кулоновских) сил.

Количественными характеристиками электрического тока являются сила тока I и плотность тока j.

Сила тока — скалярная физическая величина, равная отношением заряда Δq, проходящего через поперечное сечение проводника за некоторый промежуток времени Δt, к этому промежутку:

Единицей силы тока в СИ является ампер (А).

Если сила тока и его направление со временем не изменяются, то ток называется постоянным.

Плотность тока j — это векторная физическая величина, модуль которой равен отношению силы тока I в проводнике к площади S поперечного сечения проводника:

В СИ единицей плотности тока является ампер на квадратный метр (А/м2).

Преломление света в линзах

Линзой называется прозрачное тело, ограниченное двумя криволинейными или криволинейной и плоской поверхностями.

В большинстве случаев применяются линзы, поверхности которых имеют сферическую форму. Линза называется тонкой, если ее толщина d мала по сравнению с радиусами кривизны ее поверхностей R1 и R2. В противном случае линза называется толстой. Главной оптической осью линзы называют прямую, проходящую через центры кривизны ее поверхностей. Можно считать, что в тонкой линзе точки пересечения главной оптической оси с обеими поверхностями линзы сливаются в одну точку О, называемую оптическим центром линзы. Тонкая линза имеет одну главную плоскость, общую для обеих поверхностей линзы и проходящую через оптический центр линзы перпендикулярно к ее главной оптической оси. Все прямые, проходящие через оптический центр линзы и не совпадающие с ее главной оптической осью, называют побочными оптическими осями линзы. Лучи, идущие вдоль оптических осей линзы (главной и побочных), не испытывают преломления.

Формула тонкой линзы:

где п21 = п2/п1, п2 и n1 — абсолютные показатели преломлениядля материала линзы и окружающей среды, R1 и R2 — радиусы кривизны передней и задней (относительно предмета) поверхностей линзы, а1 и а2 — расстояния до предмета и его изображения, отсчитываемые от оптического центра линзы вдоль ее главной оптической оси.

Величину называют фокусным расстоянием линзы. Точки, лежащие на главной оптической оси линзы по обе стороны от оптического центра па одинаковых расстояниях, равных f, называют главными фокусами линии. Плоскости, проходящие через главные фокусы F1 и F2 линзы перпендикулярно к ее главной оптической оси, называют фокальными плоскостями линзы. Точки пересечения побочных оптических осей с фокальными плоскостями линзы называют побочными фокусами линзы.

Линзу называют собирающей (положительной), если ее фокусное расстояние f >0. Линзу называют рассеивающей (отрицательной), если ее фокусное расстояние f <0.

Для n2 >n1 собирающими линзами являются двояковыпуклые, плоско-выпуклые и вогнуто-выпуклые (положительные менисковые линзы), утоньшающиеся от центра к краям; рассеивающими являются двояковогнутые, плоско-вогнутые и выпукло-вогнутые линзы (отрицательные мениски), утолщающиеся от центра к краям. Для п2<n1 классификация линз обратна случаю п2 > n1.

 

Гипотеза Планка. Фотон и его свойства. Корпускулярно-волновой дуализм

Гипо́теза Пла́нка — гипотеза, выдвинутая 14 декабря 1900 года Максом Планком и заключающаяся в том, что при тепловом излучении энергия испускается и поглощается не непрерывно, а отдельными квантами (порциями). Каждая такая порция-квант имеет энергию , пропорциональной частоте ν излучения:

где h или — коэффициент пропорциональности, названный впоследствии постоянной Планка. На основе этой гипотезы он предложил теоретический вывод соотношения между температурой тела и испускаемым этим телом излучением — формулу Планка.

Позднее гипотеза Планка была подтверждена экспериментально.

Выдвижение этой гипотезы считается моментом рождения квантовой механики.

Фотон - материальная, электрически нейтральная частица, квант электромагнитного поля (переносчик электромагнитного взаимодействия).

Основные свойства фотона

1. Является частицей электромагнитного поля.

2. Движется со скоростью света.

3. Существует только в движении.

4. Остановить фотон нельзя: он либо движется со скоростью, равной скорости света, либо не существует; следовательно, масса покоя фотона равна нулю.

Энергия фотона:

Согласно теории относительности энергия всегда может быть вычислена как ,

Отсюда - масса фотона .

Импульс фотона . Импульс фотона направлен по световому пучку.

Корпускулярно-волновой дуализм

Конец XIX в.: фотоэффект и эффект Комптона подтвердили теорию Ньютона, а явления дифракции, интерференции света подтвердили теорию Гюйгенса.

Таким образом, многие физики в начале XX в. пришли к выводу, что свет обладает двумя свойствами:

1. При распространении он проявляет волновые свойства.

2. При взаимодействии с веществом проявляет корпускулярные свойства. Его свойства не сводятся ни к волнам, ни к частицам.

Чем больше v, тем ярче выражены квантовые свойства света и менее - волновые.

Итак, всякому излучению присущи одновременно волновые и квантовые свойства. Поэтому то, как проявляет себя фотон - как волна или как частица,— зависит от характера проводимого над ним исследования.

 

Опыты Резерфорда. Планетарная модель атома

Для экспериментального исследования распределения положительного заряда, а значит, и массы внутри атома Резерфорд предложил в 1906 г. применить зондирование атома с помощью α-частиц. Их масса примерно в 8000 раз больше массы электрона, а положительный заряд равен по модулю удвоенному заряду электрона. Скорость α-частиц очень велика: она составляет 1/15 скорости света. Этими частицами Резерфорд бомбардировал атомы тяжелых элементов. Электроны вследствие своей малой массы не могут заметно изменить траекторию α-частицы и не в состоянии заметно изменить его скорость. Рассеяние (изменение направления движения) α-частиц может вызвать только положительно заряженная часть атома. Таким образом, по рассеянию α-частиц можно определить характер распределения положительного заряда и массы внутри атома. Радиоактивный препарат, например радий, помещался внутри свинцового цилиндра 1, вдоль которого был высверлен узкий канал. Пучок α-частиц из канала падал на тонкую фольгу 2 из исследуемого материала (золото, медь и пр.). После рассеяния α-частицы попадали на полупрозрачный экран 3, покрытый сульфидом цинка. Столкновение каждой частицы с экраном сопровождалось вспышкой света (сцинтилляцией), которую можно было наблюдать в микроскоп 4. Весь прибор размещался в сосуде, из которого был откачан воздух.

При распределении по всему атому положительный заряд не может создать достаточно интенсивное электрическое поле, способное отбросить а-частицу назад. Максимальная сила отталкивания определяется по закону Кулона:

где qα — заряд α-частицы; q — положительный заряд атома; r — его радиус; k — коэффициент пропорциональности. Напряженность электрического поля равномерно заряженного шара максимальна на поверхности шара и убывает до нуля по мере приближения к центру. Поэтому, чем меньше радиус r, тем больше сила, отталкивающая α-частицы. Эта теория кажется совершенно необходимой для объяснения опытов по рассеиванию а-частиц. Но на основе этой модели нельзя объяснить факт существования атома, его устойчивость. Ведь движение электронов по орбитам происходит с ускорением, причем весьма немалым. Ускоренно движущийся заряд по законам электродинамики Максвелла должен излучать электромагнитные волны с частотой, равной частоте его обращения вокруг ядра. Излучение сопровождается потерей энергии. Теряя энергию, электроны должны приближаться к ядру, подобно тому как спутник приближается к Земле при торможении в верхних слоях атмосферы. Как показывают строгие расчеты, основанные на механике Ньютона и электродинамике Максвелла, электрон за ничтожно малое время должен упасть на ядро. Атом должен прекратить свое существование.

В действительности ничего подобного не происходит. Отсюда следует, что к явлениям атомных масштабов законы классической физики неприменимы. Резерфорд создал планетарную модель атома: электроны обращаются вокруг ядра, подобно тому как планеты обращаются вокруг Солнца. Эта модель проста, обоснована экспериментально, но не позволяет объяснить устойчивость атома.

 

 

Количество теплоты

Количество теплоты — это мера изменения внутренней энергии, которую тело получает (или отдает) в процессе теплообмена.

Таким образом, и работа, и количество теплоты характеризуют изменение энергии, но не тождественны энергии. Они не характеризуют само состояние системы, а определяют процесс перехода энергии из одного вида в другой (от одного тела к другому) при изменении состояния и существенно зависят от характера процесса.

Основное различие между работой и количеством теплоты состоит в том, что работа характеризует процесс изменения внутренней энергии системы, сопровождающийся превращением энергии из одного вида в другой (из механической во внутреннюю). Количество теплоты характеризует процесс передачи внутренней энергии от одних тел к другим (от более нагретых к менее нагретым), не сопровождающийся превращениями энергии.

Опыт показывает, что количество теплоты, необходимое для нагревания тела массой m от температуры T1 до температуры T2, рассчитывается по формуле где c — удельная теплоемкость вещества;

Единицей удельной теплоемкости в СИ является джоуль на килограмм-Кельвин (Дж/(кг·К)).

Удельная теплоемкость c численно равна количеству теплоты, которое необходимо сообщить телу массой 1 кг, чтобы нагреть его на 1 К.

Теплоемкость тела CT численно равна количеству теплоты, необходимому для изменения температуры тела на 1 К:

Единицей теплоемкости тела в СИ является джоуль на Кельвин (Дж/К).

Для превращения жидкости в пар при неизменной температуре необходимо затратить количество теплоты

где L — удельная теплота парообразования. При конденсации пара выделяется такое же количество теплоты.

Для того чтобы расплавить кристаллическое тело массой m при температуре плавления, необходимо телу сообщить количество теплоты

где λ — удельная теплота плавления. При кристаллизации тела такое же количество теплоты выделяется.

Количество теплоты, которое выделяется при полном сгорании топлива массой m,

где q — удельная теплота сгорания.

Единица удельных теплот парообразования, плавления и сгорания в СИ — джоуль на килограмм (Дж/кг).

 

 

Электрический заряд и его свойства. Дискретность. Элементарный электрический заряд. Закон сохранения электрического заряда.

Электрический заряд – это физическая величина, характеризующая электромагнитное взаимодействие. Тело заряжено отрицательно, если на нем избыток электронов, положительно – дефицит.

Перечислим свойства зарядов

1. Существуют заряды двух видов; отрицательные и положительные. Разноименные заряды притягиваются, одноименные отталкиваются. Носителем элементарного, т.е. наименьшего, отрицательного заряда является электрон, заряд которого qe= -1,6*10-19Кл, а масса mе=9,1*10-31кг. Носителем элементарного положительного заряда является протон qр=+1,6*10-19Кл, масса mр=1,67*10-27кг.

2. Электрический заряд имеет дискретную природу. Это означает, что заряд любого тела кратен заряду электрона q=Nqe, где N – целое число. Однако мы, как правило, не замечаем дискретности заряда, так как элементарный заряд очень мал.

3. В изолированной системе, т.е. в системе, тела которой не обмениваются зарядами с внешними по отношению к ней телами, алгебраическая сумма зарядов сохраняется (закон сохранения заряда).

4. Эл. заряд всегда можно передать от одного тела к другому.

5. Единица заряда в СИ – кулон (Кл). По определению, 1 кулон равен заряду, протекающему через поперечное сечение проводника за 1 с при силе тока 1 А.

6. Закон сохранения электрического заряда.

Внутри замкнутой системы при любых взаимодействиях алгебраическая сумма электрических зарядов остается постоянной:

Изолированной (или замкнутой) системой мы будем называть систему тел, в которую не вводятся извне и не выводятся из нее электрические заряды.

Нигде и никогда в природе не возникает и не исчезает электрический заряд одного знака. Появление положительного электрического заряда всегда сопровождается появлением равного по модулю отрицательного заряда. Ни положительный, ни отрицательный заряд не могут исчезнуть в отдельности, они могут лишь взаимно нейтрализовать друг друга, если равны по модулю.

Так элементарные частицы способны превращаться друг в друга. Но всегда при рождении заряженных частиц наблюдается появление пары частиц с зарядами противоположного знака. Может наблюдаться и одновременное рождение нескольких таких пар. Исчезают заряженные частицы, превращаясь в нейтральные, тоже только парами. Все эти факты не оставляют сомнений в строгом выполнении закона сохранения электрического заряда.

Элементарный заряд - минимальный заряд, разделить который невозможно.



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 2390; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.161.43 (0.009 с.)