Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Диэлектрическая проницаемость твердых диэлектриковСодержание книги
Поиск на нашем сайте
В твердых телах может принимать самые разные числовые значения в соответствии с разнообразием структурных особенностей твердого диэлектрика. В твердых диэлектриках возможны все виды поляризации. Наименьшее значение e имеют твердые диэлектрики, состоящие из неполярных молекул и обладающие только электронной поляризацией [e парафина — (1,9—2,2); e полистирола (2,4—2,6); e серы — (3,6—4,0)]. Твердые диэлектрики, представляющие собой ионные кристаллы с плотной упаковкой частиц, обладают электронной и ионной поляризациями и имеют значения e, лежащие в широких пределах (e каменной соли — 6; e корунда — 10; e рутила — 110; e титаната кальция — 150). e различных неорганических стекол, приближающихся по строению к аморфным диэлектрикам, лежит в сравнительно узких пределах от 4 до 20. Полярные органические диэлектрики обладают в твердом состоянии дипольно-релаксационной поляризацией. e этих материалов в большой степени зависит от температуры и частоты приложенного напряжения, подчиняясь тем же закономерностям, что и у дипольных жидкостей.
3 В электротехнике широко используются различные приборы и устройства, связанные с особенностями и физическими свойствами материалов. Среди них особое место занимают фотодиоды, принцип работы которых основан на воздействии оптического излучения. В результате, материал изменяет свои качества, что позволяет ему выполнять различные функции в электрических цепях. Принцип действия фотодиода Простой фотодиод является обыкновенным полупроводниковым диодом с р-п-переходом, на который оказывает действие оптическое излучение. При полном отсутствии светового потока, диод находится в состоянии равновесия и обладает обычными свойствами. Действие излучения направлено перпендикулярно относительно плоскости, где расположен р-п-переход. Энергия, с которой поглощаются фотоны, превышает ширину запрещенной зоны, что приводит к возникновению электронно-дырочных пар. Данные пары, состоящие из электронов и дырок, получили наименование фотоносителей. Когда фотоносители проникают внутрь п-области, электроны и дырки, в основной массе не успевают распадаться на составляющие и подходят непосредственно к границе р-п-перехода. В этом месте происходит разделение фотоносителей с помощью электрического поля. В результате, дырки попадают в р-область. Электроны же не в состоянии пройти через поле, окружающее переход, поэтому начинается их скапливание возле п-области и у границы перехода. Таким образом, прохождение тока через переход полностью зависит от движения дырок. Данный вид тока с участием фотоносителей получил название фототока. Под воздействием фотоносителей-дырок в р-области по отношению к п-области возникает положительный заряд. Таким же образом, п-область заряжается отрицательно относительно р-области. Происходит возникновение разности потенциалов, именуемой фото-ЭДС. Ток, сгенерированный в фотодиоде, имеет обратное значение и направление от катода к аноду. Величина этого тока возрастает в зависимости от увеличения степени освещенности. Работа фотодиодов может осуществляться в двух режимах. В первом случае используется фотогенераторный режим, не предусматривающий внешний источник электроэнергии. В режиме фотопреобразователя необходимо использование внешнего источника электроэнергии. Режим фотогенератора позволяет использовать фотодиоды как источники питания, преобразующие солнечное излучение в электрическую энергию. Они используются в качестве элементов солнечной батареи. Коэффициент полезного действия элементов на основе кремния составляет примерно 20%. КПД у пленочных конструкций может быть значительно выше. В работе фотодиодом нередко используется свойство обратимого электрического пробоя. В результате, количество носителей заряда умножается лавинообразно, по аналогии с полупроводниковыми стабилитронами. Происходит значительный рост фототока и чувствительности фотодиодов. Данное значение превышает обычные параметры в сотни раз. Частота лавинных фотодиодов достигает величины до 10 ГГц, что позволяет использовать их в качестве быстродействующих фотоэлектрических приборов. Единственным недостатком этих устройств является повышенный уровень шума. Фотодиоды очень часто используются в паре со светодиодами. Они размещаются в общем корпусе, при этом, расположение светочувствительной площадки фотодиода наиболее оптимально к излучающей светодиодной площадке. Данные приборы получили название оптронов. Электрические связи совершенно не касаются входных и выходных цепей, поскольку сигналы передаются путем оптического излучения. Характеристики фотодиодов Если рассматривать в целом непосредственно фотодиоды, принцип действия и другие параметры этих устройств, следует отметить то, как выходная мощность соотносится с общей массой и площадью солнечной батареи. Максимальное значение этих параметров может достигать соответственно 200 ватт на 1 кг и 1 киловатт на 1 м2. Кроме того, значение имеет вольт-амперная характеристика, в которой выходное напряжение зависит от выходного тока. Значение спектральных характеристик показывает соотношение фототока и величины световых волн, падающих на фотодиод. Максимальное значение данного параметра находится в прямой зависимости от того, насколько возрастает коэффициент поглощения. Фототок и освещенность определяют световую характеристику фотодиода. Обе величины имеют между собой прямую пропорциональную зависимость. Эта величина представляет временной отрезок, на протяжении которого происходят изменения после того как фотодиод освещен или затемнен. Показатель соотносится с установленным значением. Фотодиод также характеризуется в соответствии с сопротивлением при отсутствии освещения и другими параметрами, определяющими его работоспособность и область практического применения. Билет 7 1 Ток смещения Iсмвызван как мгновенными (деформационными) видами поляризации, так и замедленными (релаксационными), а также перераспределением свободных зарядов — их дрейфом (без разряжения на электродах). Ток абсорбции Iаб вызван релаксационными видами поляризациии перераспределением свободных зарядов в объеме диэлектрика. Он приводит к накоплению носителей заряда в местах наибольшей концентрации ловушек (уровней захвата) — дефектов решетки, неоднородностей, границ раздела и т.п. В результате в диэлектрике возникают объемные заряды, и электрическое поле в нем становится неоднородным. Поле, создаваемое объемными зарядами, направлено в данном случае обратно приложенному полю. Ток абсорбции при постоянном напряжении наблюдается только в момент включения и выключения, при переменном напряжении — в каждый полупериод изменения электрического поля, т.е. практически в течение всего времени приложения переменного напряжения. Под действием образовавшихся объемных зарядов, а также поляризации диэлектрика (особенно при наличии дипольно-релаксационной составляющей), образец заряжается. Но если от него отключить внешний источник напряжения и его закоротить, то по образцу пойдет обратный так называемый ток деполяризации, который образуется в результате освобождения носителей заряда с различных ловушек и дезориентации диполей. Зависимость тока деполяризации от времени несет информацию oзакономерностях молекулярной подвижности, дефектах строения, и в ряде случаев с ее помощью возможно прогнозирование срока службы полимерной изоляции (см. гл. 5.4.3). При нагревании (с постоянной скоростью) заряженного образца образуется 1°к деполяризации, или ток термостимулированной деполяризации (ТСД). МетодTСД широко используют при изучении релаксационных переходов (Tс,Tт и др.) в полимерных диэлектриках, а также закономерностей накопления и переноса носителей 3аряда. Составляющая тока, которая не изменяется со временем приложения постоянного напряжения, представляет собой стационарный поток электрически заряженных частиц, разряжающихся на электродах, и называется током сквозной проводимостиIск (сквозным токомI, или остаточным током).По величине сквозного тока определяют удельную объемную(илиповерхностную)электропроводностьдиэлектрика. Ток сквозной проводимости обусловлен направленным движением носителей заряда, поставляемых ионогенной примесью, самим диэлектриком и в сильных полях инжектируемых из электродов, и сопровождается обязательным их разряжением на электродах. Только в результате разряжения носителей заряда на электродах (положительный ион принимает электрон(ы) из катода, а отрицательный ион отдаст электрон(ы) аноду) во внешней цепи возникает электрический (электронный) ток, измерив величину которого, можно определить удельное объемное (или поверхностное) сопротивление диэлектрика. Если носители заряда не смогут преодолеть потенциальный барьер на границе диэлектрик—металл, то они не разрядятся на электродах и в приэлектродных областях образуют объемные заряды, которые создадут в диэлектрике электрическое поле, направленное противоположно приложенному полю. Ток сквозной проводимости измеряют тогда, когда после приложения к образцу постоянного напряжения ток абсорбции спадет практически до нуля. Это время составляет от нескольких минут до нескольких десятков минут и определяется экспериментально. Величина тока сквозной проводимости при длительном приложении постоянного напряжения может существенно изменяться в результате электрохимических процессов, а также образования объемных зарядов.Величина сквозного тока не изменяется только при чисто электронном типе проводимости.Если при длительном приложении постоянного напряжения к твердому или жидкому диэлектрику ток сквозной проводимости со временем продолжает уменьшаться (см. рис. 3.3, кривая 2), значит электропроводность данного материала обусловлена в основном ионами примеси и уменьшается в результате электроочистки образца. Ток сквозной проводимости также уменьшается, если носители заряда, подходя к электродам, не разряжаются (из-за высокого потенциального барьера на границе металл—диэлектрик). Накапливаясь в приэлектродных областях, носители заряда образуют объемные заряды (положительный — у катода и отрицательный — у анода), препятствующие прохождению тока. Объемные заряды в приэлектродных областях могут также образовываться (в сильных полях) в результате инжекции зарядов со стороны электродов, однако в этом случае знак объемных зарядов соответствует полярности электродов (см. гл. 7.15.5). Таким образом, если до приложения электрического поля диэлектрик был электронейтральным, т.е. суммарный заряд всех его микрообъемов был равен нулю, то после приложения поля, в результате перемещения зарядов (в том числе инжектированных из электродов) на макроскопические расстояния и закрепления части из них на ловушках, электронейтральность нарушается, и в диэлектрике возникают объемные заряды. Образец поляризуется. Объемные заряды образуются при прохождении как тока смещения, в частности тока абсорбции, так и тока сквозной проводимости. Если же ток сквозной проводимости увеличивается (см. рис. 3.3, кривая 7), то это указывает на участие в образовании электрического тока собственных зарядов материала, являющихся его структурными элементами, т.е. имеет место электролиз. В этом случае материал стареет — в нем протекают необратимые электрохимические процессы, постепенно приводящие к разрушению (пробою) образца. Например, приложив к нагретому неорганическому стеклу постоянное напряжение, можно наблюдать благодаря его прозрачности, как в стекле продукты электролиза, в частности выделяющийся на катоде металлический натрий, образуют ветвистые отложения — металлические дендриты. При достаточном времени прохождения тока дендриты могут прорасти сквозь всю толщину диэлектрика от катода к аноду и образовать проводящий канал. 3 Светодиодом называется полупроводниковый диод, предназначенный для преобразования электрической энергии в энергию некогерентного светового излучения. При протекании через диод прямого тока происходит инжекция неосновных носителей заряда (электронов или дырок) в базовую область диодной структуры Процесс самопроизвольной рекомбинаци инжектированных неосновных носителей заряда, происходящих как в базовой области, так и в самом p-n переходе, сопровождается переходом их с высокого энергетического уровня на более низкий; при этом избыточная энергия выделяется путем излучения кванта света. Чтобы кванты энергии – фотоны, освободившиеся при рекомбинации, соответствовали квантам видимого света, ширина запрещенной зоны исходного полупроводника должна быть относительно большой (Еg > 1,8 эВ). Исходя из этого ограничения, для изготовления светодиодов используются следующие полупроводниковые материалы: фосфид галлия (GaP), карбид кремния (SiC), твердые растворы: галлий—мышьяк—фосфор (GaAsP) и галлий—мышьяк—алюминий (GaAsAl), а также нитрид галлия (GaN), который имеет наибольшую ширину запрещенной зоны (Eg > 3,4 эВ), что позволяет получать излучение в коротковолновой части видимого спектра вплоть до фиолетового. Путем добавления в полупроводниковый материал атомов веществ-активаторов можно изменять в некоторых пределах цвет излучения светодиода. Например, на основе фосфида галлия, легированного определенным количеством цинка, кислорода или азота, получают светодиоды зеленого, желтого и красного цветов свечения. Тройные соединения GaAsP и GaAsAl используют, в основном, для получения светодиодов красного цвета свечения. Обычно излучение светодиодов является монохроматическим с оговоренной для каждого типа максимальной длиной волны, имеющий незначительный разброс внутри каждого типа. Светодиоды с управляемым цветом свечения изготавливаются на основе двух светоизлучающих переходов, один из которых имеет резко выраженный максимум спектральной характеристики в красной полосе, другой — в зеленой. При совместной работе цвет результирующего излучения зависит от соотношения токов через переходы. Основным технологическим методом изготовления светодиодов является метод эпитаксиального наращивания. Это жидкофазная эпитаксия или эпитаксия из газовой фазы. В некоторых случаях, в основном, при использовании карбида кремния, применяется метод диффузии примесей (акцепторных или донорных) из газовой фазы, проводящийся внутри кварцевых ампул. Одним из основных параметров светодиодов является: яркость — величина, равная отношению силы света к площади светящейся поверхности (измеряется в канделах на квадратный метр). Спектральная характеристика светодиода выражает зависимость интенсивности излучения от длины волны излучаемого света и дает представление о цвете свечения светодиода. Длина волны излучаемого света определяется разностью энергий двух энергетических уровней, между которыми происходит переход электронов на излучательном этапе процесса рекомбинации и определяется исходным полупроводниковым материалом и легирующими примесями. Излучение светодиода также характеризуется диаграммой направленности (угол половинной яркости), которая определятся конструкцией светодиода, наличием линзы и оптическими свойствами защищающего кристалл материала (измеряется в градусах). Излучение светодиода может быть узконаправленным или рассеянным. Основные параметры светодиодов зависят от окружающей температуры. С увеличением температуры яркость (сила света), а также падение напряжения на светодиоде уменьшается. Зависимость яркости от температуры практически линейная, в интервале рабочей температуры может изменяться в 2-3 раза. Промышленные светодиоды имеют сравнительно большой разброс параметров и характеристик от образца к образцу. Светодиоды, применяемые в наружной рекламе, должны соответствовать самым высоким требованиям к зависимости яркости от температуры окружающей среды и выдерживать диапазон температур от –40°С до +80°С, не изменяя яркости (силы света). Такие параметры светодиодов могут обеспечить только фирмы-лидеры в своей области, работающие на самом современном высокотехнологичном оборудовании и использующие самые современные технологии. Светодиоды обладают высоким быстродействием. Излучение нарастает за время менее 10-8с после подачи импульса прямого тока, что делает их незаменимыми в световой рекламе, несущей быстро сменяемую информацию. По внешнему конструктивному признаку светодиоды подразделяются на приборы в металлических корпусах со стеклянной линзой (обладают весьма острой направленностью излучения) и пластмассовых корпусах из оптически прозрачного, чаще цветного компаунда, создающего рассеянное излучение. Именно эти светодиоды и применяются в наружной и интерьерной рекламе, обеспечивая одновременно и достаточную яркость, и максимально возможный угол просмотра. Билет 8 1 3.1.1. Электропроводность объемная и поверхностная
Электропроводность диэлектриков имеет две характерные особенности. Первая особенность заключается в том, что при приложении к образцу твердого или жидкого диэлектрика постоянного напряжения через него протекает ток сквозной проводимости(ток Утечки)I, который складывается из двух составляющих: токаобъемной проводимостиIuтокаповерхностной проводимостиIs(рис. 3.1): I=Iu + Is(3-1) Для сравнительной оценки величин токов объемной и поверхностной проводимостей пользуются значениями удельного объемного сопротивления ρ и удельного поверхностного сопротивления ρs или удельнoй объемной проводимости γ и удельной поверхностной проводимости γs. Значениями ρ и γs обычно пользуются только для твердых диэлектриков.Для плоского образца, находящегося в однородном электрическом поле при постоянном напряжении U (рис. 3.2), удельное объемное р (Ом•м) и удельное поверхностное рs (Ом) сопротивления определяются соответственно по формулам: р = RS/h, ps = 2πRs / ln(dl/d2), (3.2) Iu— ток объемной проводимости 1 — измерительный электрод; Is— ток оверхностной 2 — «кольцевой» электрод, проводимости используемый как заземляющий приопределении р и как высоковольтный при опре- деленииρs; 3 — электрод: высоковольтный при определении р и заземляющий при определении ρs; 4 — образец где R— объемное сопротивление образца, Ом (R=U/Iu);Rs— поверхностное сопротивление образца, Ом (R=U/Is);S— площадь измерительного электрода, м2 (см. рис. 3.2,I);h— толщина образца, м;d1 — внутренний диаметр «кольцевого» электрода, м;d2 — диаметр измерительного электрода, м. Удельная объемная γ, См/м (Ом-1 м-1),и удельная поверхностная γs, См (Ом-1), проводимости являются величинами, обратными соответствующим удельным сопротивлениям: 3 Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n и p-n-p транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). Работа биполярного транзистора, в отличие от полевого транзистора, основана на переносе зарядов одновременно двух типов, носителями которых являются электроны и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке. Электрод, подключённый к среднему слою, называют базой, электроды, подключённые ко внешним слоям, называют коллектором и эмиттером. С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы. Но практически, при изготовлении транзисторов, для улучшения электрических параметров прибора они существенно различаются степенью легирования примесями. Эмиттерный слой сильно легированный, коллекторный легируется слабо, что обеспечивает повышение допустимого коллекторного напряжения. Величина пробойного обратного напряжения эмиттерного перехода некритична, так как обычно в электронных схемах транзисторы работают с прямосмещенным эмиттерным P-n-переходом, кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Кроме того, площадь коллекторного P-n-перехода при изготовлении делается существенно больше площади эмиттерного перехода, что обеспечивает лучший сбор неосновных носителей из базового слоя и улучшает коэффициент передачи. Для повышения быстродействия (частотных параметров) биполярного транзистора толщину базового слоя нужно делать тоньше, так как толщиной базового слоя, в том числе, определяется время «пролёта» (диффузии в бездрейфовых приборах) неосновных носителей, но, при снижении толщины базы, снижается предельное коллекторное напряжение, поэтому толщину базового слоя выбирают исходя из разумного компромисса. Устройство и принцип действия Упрощенная схема поперечного разреза планарного биполярного n-p-n транзистора. В первых транзисторах в качестве полупроводникового материала использовался металлический германий. В настоящее (2015 г.) время их изготавливают в основном из монокристаллического кремния и монокристаллического арсенида галлия. Благодаря очень высокой подвижности носителей в арсениде галлия приборы на его основе обладают высоким быстродействием и используются в сверхбыстродействующих логических схемах и в схемах СВЧ-усилителей. Биполярный транзистор состоит из трёх различным образом легированных полупроводниковых слоёв: эмиттера E (Э), базы B (Б) и коллектора C (К). В зависимости от чередования типа проводимости этих слоёв различают n-p-n (эмиттер − n-полупроводник, база − p-полупроводник, коллектор − n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты[1]. Слой базы расположен между эмиттерным и коллекторным слоями и слаболегирован, поэтому имеет большое омическое сопротивление. Общая площадь контакта база-эмиттер выполняется значительно меньше площади контакта коллектор-база (это делается по двум причинам — большая площадь перехода коллектор-база увеличивает вероятность захвата неосновных носителей заряда из базы в коллектор и, так как в рабочем режиме переход коллектор-база обычно включен с обратным смещением, при работе в коллекторном переходе выделяется основная доля тепла, рассеиваемого прибором, повышение площади способствует лучшему отводу тепла от коллекторного перехода), поэтому реальный биполярный транзистор общего применения является несимметричным устройством (технически нецелесообразно менять местами эмиттер и коллектор и получить в результате аналогичный исходному биполярный транзистор — инверсное включение). В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт). Для определённости рассмотрим работу n-p-n транзистора, все рассуждения повторяются абсолютно аналогично для случая p-n-p транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В n-p-n транзисторе электроны, основные носители заряда в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, бо́льшая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора, так как время рекомбинации относительно велико[2]. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает неосновные носители из базы (электроны), и переносит их в коллекторный слой. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк). Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0,9—0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малым током базы можно управлять значительно бо́льшим током коллектора.
Режимы работы биполярного транзистора Нормальный активный режим Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база — в обратном (закрыт) UЭБ>0; UКБ<0 (для транзистора n-p-n типа), для транзистора p-n-p типа условие будет иметь вид UЭБ<0;UКБ>0. Инверсный активный режимЭмиттерный переход имеет обратное включение, а коллекторный переход — прямое. Режим насыщения Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ. нас) и коллектора (IК. нас). Напряжение насыщения коллектор-эмиттер (UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог RСИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе. Режим отсечки В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В). Режим отсечки соответствует условию UЭБ<0,7 В, или IБ=0. Барьерный режим В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов. Билет 9 1 Электропроводность жидких диэлектриков. В жидких диэлектриках бывают два основных механизма электропроводности: ионный и молионный. Ионная электропроводность определяется диссоциацией молекул жидкости, а также различных примесей или загрязнений, которые часто встречаются на практике, так как жидкости легко загрязняются. В технически чистых жидких диэлектриках всегда содержатся те или иные примеси, обычно легче диссоциирующие, чем основной диэлектрик, поэтому проводимость в них сильно зависит от чистоты жидкости: на собственную проводимость диэлектрика накладывается примесная проводимость. В зависимости от природы жидкого диэлектрика в нём могут быть разные диссоциирующие примеси. Например, нефтяному электроизоляционному маслу сопутствуют некоторые органические кислоты; само масло является химически нейтральным углеводородом. Эти кислоты благодаря лёгкой диссоциации заметно повышают удельную проводимость масла. Загрязнением в жидком диэлектрике, в частности в том же масле, является и вода, попадающая в него непосредственно из атмосферного воздуха благодаря известной гигроскопичности масла. Вода в жидком диэлектрике может быть в трёх состояниях: а) молекулярно-растворённое; б) в виде эмульсии, то есть в виде мельчайших капель, находящихся в жидком диэлектрике во взвешенном состоянии; в) в виде избыточной воды, не удерживающейся в эмульсии, выпадающей из неё. Избыточная вода или тонет в диэлектрике, если его плотность меньше 1000 кг/м3 (например, нефтяное масло), или всплывает на его поверхности, если плотность диэлектрика больше 1000 кг/м3 (например, хлорированный дифенил – совол). Лёд обычно всплывает на поверхность трансформаторного масла. Вода в жидком диэлектрике может переходить из одного состояния в другое при изменении температуры за счёт изменения растворяющей способности диэлектрика. При повышении температуры растворяющая способность увеличивается и эмульсионная вода полностью или частично переходит в молекулярно растворённое состояние, а избыточная вода – в эмульсионное в зависимости от значения температуры. При понижении температуры происходит обратный процесс. При длительном воздействии высокой температуры сказывается эффект сушки (испарения воды) жидкого диэлектрика. Гигроскопичность жидкости зависит от её состава и от наличия полярных молекул. Полярные молекулы, как правило, отличаются большой активностью, поэтому полярные жидкости легче смешиваются с различными примесями и загрязнениями. Например: молекулярная растворимость воды в масле очень мала вследствие очень большой разницы между размерами молекул воды и масла. Межмолекулярные силы взаимодействия в этом случае препятствуют смешению масла и воды. Количество воды, поглощаемое маслом из воздуха до равновесного состояния, пропорционально относительной влажности воздуха. Скорость насыщения любой жидкости влагой, поглощаемой из атмосферного воздуха, увеличивается с увеличением поверхности соприкосновения. При наличии в нефтяном масле полярных примесей его гигроскопичность повышается, поэтому у окислившихся масел с повышенным кислотным числом влагопоглощение больше, сем у свежих. Известно, что в составе жидких углеводородов могут быть молекулы разной структуры, что также сказывается на гигроскопичности. В частности масло со значительным содержанием ароматических углеводородов отличается повышенной гигроскопичностью. Жидким загрязнением может быть не только вода, но и какая – либо другая посторонняя жидкость. Остановимся на растворимости в масле различных газов. Жидкие диэлектрики в обычных условиях всегда содержат растворённый газ; в частности, большой способностью к растворению газов отличается нефтяное масло. Разные газы по–разному растворяются в жидкости. Эта их способность обычно определяется в процентах по объёму (коэффициент растворимости). Для примера ниже приведены значения коэффициента растворимости в масле для некоторых газов: воздух 9.4; азот 8.6; кислород 16; углекислый газ 120; водород 7. Благодаря этому состав воздуха, растворённого в масле, отличается от состава атмосферного воздуха. Обычно атмосферный воздух содержи 78% азота и 21% кислорода (по объёму), а в масле соотношение их будет таким: 69.8% азота и 30.2% кислорода. Изменение температуры по – разному влияет на растворимость газов в масле. Например, при повышении температуры от 20 до 800 С растворимость водорода и азота увеличивается, кислорода несколько понижается, а углекислого газа резко падает. Рассмотри ионную электропроводность жидких диэлектриков как основной её вид. Собственная ионная проводимость зависит от способности молекул к диссоциации. Легче диссоциируют молекулы, обладающие чисто ионными связями, так называемые гетерополярные. Диссоциация молекул жидкости происходит и без воздействия электрического поля; установлено, что отношение количества диссоциированных молекул в данном объёме жидкостей к их общему количеству, называемое степенью диссоциации, зависит от относительной диэлектрической проницаемости жидкости. В соответствии с этим правилом полярные жидкости, имеющие большую диэлектрическую проницаемость, имеют повышенную степень диссоциации и повышенную собственную проводимость. У жидкостей неполярных, например нефтяного электроизоляционного масла, собственная проводимость очень мала из за слабой способности молекул углеводородов к диссоциации. У таких жидкостей электропроводность в основном носит примесный характер, а проводимость зависит как от свойств примеси, так и от её содержания в диэлектрике. Полярные жидкости особенно чувствительны к примесям. Это объясняется тем, что степень диссоциации молекул примесей в жидкости с большой относительной диэлектрической проницаемостью выше, чем в жидкости с малой диэлектрической проницаемостью. В связи с такой особенностью полярных жидкостью у них часто бывает затруднительно отделить собственную проводимость от примесной. Рассмотрим закономерности молионной электропроводности. При помощи современных оптических микроскопов с большой разрешающей способностью в жидкости можно обнаружить коллоидные частицы разного происхождения и проследить за характером их движения в электрическом поле. Коллоидные частицы переносятся электрическим полем к электроду определённого знака (при определённом напряжении). Для коллоидных частиц примесной жидкости знак заряда частицы зависит от соотношения относительных диэлектрических проницаемостей основной жидкости и примесей. Если относительная диэлектрическая проницаемость примеси меньше, чем основной жидкости, то частицы примеси заряжаются отрицательно, в противном случае – положительно. В случае неоднородного электрического поля коллоидные частицы стремятся в зону максимальной напряжённости электрического поля, к электроду соответствующего знака, вследствие этого концентрация загрязнений здесь сильно повышается за счёт известного снижения её в других зонах. Вообще при молионной электропроводности со временем частицы загрязнений сосредоточиваются у электродов, и таким образом происходит очистка жидкостей от загрязнений. При переменном напряжении вследствие непрерывного изменения направления движения коллоидных частиц эффект очистки от них не наблюдается. Вследствие эффекта очистки с течением времени после включения постоянного напряжения удельное сопротивление жидкости увеличивается. Предельный цикл ПРЕДЕЛЬНЫЙ ЦИКЛ - изолированная замкнутая траектория в фазовом пространстве динамич. системы, изображающая периодич. движение. В окрестности П. ц.фазовые траектории либо удаляются от него (неустойчивый П. ц.), либо неограниченно приближаются к нему - "наматываются" на него (устойчивый П. ц.). Поведение траекторий в окрестности П. ц. связано со значениями его мультипликаторов (см. Бифуркация).Если абс. величины всех мультипликаторов меньше 1, то все трдектории неограниченно приближаются к нему и он устойчив. Устойчивый П. ц. является матем. образом периодич.автоколебаний. Напр., ур-ние Ван дер Поля (описывающее, в частности, динамику лампового генератора) имеет при значениях параметра > 0 единственный устойчивый П. ц. (рис. 1). Рис. 1. Фазовые портреты генератора Ван дер Поля при различных значениях нелинейности: а - квазигармоничные колебания; 6 - сильно несинусоидальные; в - релаксационные. Для систем с одной степенью свободы (их фазовое пространство - плоскость) устойчивыми П. ц. и устойчивыми состояними равновесия исчерпываются все возможные объекты, к-рые притягивают соседние траектории на фазовой плоскости. В многомерных динамич. системах с размерностью фазового пространства n 3 возможны более сложные притягивающие объекты - аттракторы. Рис. 2. Седловой предельный цикл: - устойчивое се-паратрисное многообразие; - неустойчивое сепаратри-сное многообразие. Если часть мультипликаторов (но не все) по модулю больше 1, то П. ц. сед
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 458; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.157.231 (0.021 с.) |