Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Измерение тесноты и силы корреляционной связи с использованием коэффициента детерминации и эмпирического корреляционного отношения↑ ⇐ ПредыдущаяСтр 3 из 3 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Для измерения тесноты и силы связи между факторным и результативным признаками рассчитывают специальные показатели – эмпирический коэффициент детерминации и эмпирическое корреляционное отношение . Эмпирический коэффициент детерминации оценивает силу связи, определяя, насколько вариация результативного признака Y объясняется вариацией фактора Х (остальная часть вариации Y объясняется вариацией прочих факторов). Показатель рассчитывается как доля межгрупповой дисперсии в общей дисперсии по формуле , (9) где – общая дисперсия признака Y, – межгрупповая (факторная) дисперсия признака Y. Значения показателя изменяются в пределах . При отсутствии корреляционной связи между признаками Х и Y имеет место равенство = 0, а при наличии функциональной связи между ними - равенство = 1. Общая дисперсия характеризует вариацию результативного признака, сложившуюся под влиянием всех действующих на Y факторов (систематических и случайных). Этот показатель вычисляется по формуле , (10) где yi – индивидуальные значения результативного признака; – общая средняя значений результативного признака; n – число единиц совокупности. Общая средняя вычисляется как средняя арифметическая простая по всем единицам совокупности: (11) или как средняя взвешенная по частоте групп интервального ряда: (12) Для вычисления удобно использовать формулу (11), т.к. в табл. 8 (графы 3 и 4 итоговой строки) имеются значения числителя и знаменателя формулы. Расчет по формуле (11): Для расчета общей дисперсии применяется вспомогательная таблица 12. Таблица 12 Вспомогательная таблица для расчета общей дисперсии
Расчет общей дисперсии по формуле (10): Общая дисперсия может быть также рассчитана по формуле , где – средняя из квадратов значений результативного признака, – квадрат средней величины значений результативного признака. Для демонстрационного примера Тогда Межгрупповая дисперсия измеряет систематическую вариацию результативного признака, обусловленную влиянием признака-фактора Х (по которому произведена группировка). Воздействие фактора Х на результативный признак Y проявляется в отклонении групповых средних от общей средней . Показатель вычисляется по формуле , (13) где –групповые средние, – общая средняя, –число единиц в j-ой группе, k – число групп. Для расчета межгрупповой дисперсии строится вспомогательная таблица 13 При этом используются групповые средние значения из табл. 8 (графа 5). Таблица 13 Вспомогательная таблица для расчета межгрупповой дисперсии
Расчет межгрупповой дисперсии по формуле (11): Расчет эмпирического коэффициента детерминации по формуле (9): или 75,1% Вывод. 75,1% вариации суммы прибыли банков обусловлено вариацией объема кредитных вложений, а 24,9% – влиянием прочих неучтенных факторов. Эмпирическое корреляционное отношение оценивает тесноту связи между факторным и результативным признаками и вычисляется по формуле (14) Значение показателя изменяются в пределах . Чем ближе значение к 1, тем теснее связь между признаками. Для качественной оценки тесноты связи на основе служит шкала Чэддока (табл. 14):
Таблица 14 Шкала Чэддока
Расчет эмпирического корреляционного отношения по формуле (14): Вывод. Согласно шкале Чэддока связь между объемом кредитных вложений и суммой прибыли банков является тесной. 3. Оценка статистической значимости коэффициента детерминации . Показатели и рассчитаны для выборочной совокупности, т.е. на основе ограниченной информации об изучаемом явлении. Поскольку при формировании выборки на первичные данные могли иметь воздействии какие-либо случайные факторы, то есть основание полагать, что и полученные характеристики связи , несут в себе элемент случайности. Ввиду этого, необходимо проверить, насколько заключение о тесноте и силе связи, сделанное по выборке, будет правомерными и для генеральной совокупности, из которой была произведена выборка. Проверка выборочных показателей на их неслучайность осуществляется в статистике с помощью тестов на статистическую значимость (существенность) показателя. Для проверки значимости коэффициента детерминации служит дисперсионный F-критерий Фишера, который рассчитывается по формуле , где n – число единиц выборочной совокупности, m – количество групп, – межгрупповая дисперсия, – дисперсия j-ой группы (j=1,2,…,m), – средняя арифметическая групповых дисперсий. Величина рассчитывается, исходя из правила сложения дисперсий: , где – общая дисперсия. Для проверки значимости показателя рассчитанное значение F-критерия Fрасч сравнивается с табличным Fтабл для принятого уровня значимости и параметров k1, k2, зависящих от величин n и m: k1=m-1, k2=n-m. Величина Fтабл для значений , k1, k2 определяется по таблице распределения Фишера, где приведены критические (предельно допустимые) величины F-критерия для различных комбинаций значений , k1, k2. Уровень значимости в социально-экономических исследованиях обычно принимается равным 0,05 (что соответствует доверительной вероятности Р=0,95). Если Fрасч>Fтабл, коэффициент детерминации признается статистически значимым, т.е. практически невероятно, что найденная оценка обусловлена только стечением случайных обстоятельств. В силу этого, выводы о тесноте связи изучаемых признаков, сделанные на основе выборки, можно распространить на всю генеральную совокупность. Если Fрасч<Fтабл, то показатель считается статистически незначимым и, следовательно, полученные оценки силы связи признаков относятся только к выборке, их нельзя распространить на генеральную совокупность. Фрагмент таблицы Фишера критических величин F-критерия для значений =0,05; k1=3,4,5; k2=24-35 представлен ниже:
Расчет дисперсионного F-критерия Фишера для оценки =75,1%, полученной при =473,0763, =355,1310: Fрас ч Табличное значение F-критерия при = 0,05:
Вывод: поскольку Fрасч>Fтабл, то величина коэффициента детерминации =75,1% признается значимой (неслучайной) с уровнем надежности 95% и, следовательно, найденные характеристики связи между признаками Объем кредитных вложений банков и Сумма прибыли банков правомерны не только для выборки, но и для всей генеральной совокупности банков. Задание 3 По результатам выполнения Задания 1 с вероятностью 0,954 необходимо определить: 1) ошибку выборки средней величины объема кредитных вложений банков и границы, в которых будет находиться генеральная средняя. 2) ошибку выборки доли банков с объемом кредитных вложений 175 млн руб. и выше, а также границы, в которых будет находиться генеральная доля. 3) необходимый объем выборки при заданной предельной ошибке выборки, равной 10 млн руб. Выполнение Задания 3 Целью выполнения данного Задания является определение для генеральной совокупности коммерческих банков региона границ, в которых будут находиться величина среднего объема кредитных вложений банков и доля банков с объемом кредитных вложений не менее 175 млн руб.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-15; просмотров: 697; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.67.248 (0.009 с.) |