![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Алгоритмічна та програмна реалізація метода НьютонаСодержание книги
Поиск на нашем сайте
Var X0, E, XK, XK1, FK, FK1: real; k: integer; label M,M1; Begin <введення вихідних даних> K:=0; XK:=X0; M1: FK:=XK*XK*XK-5*XK-10; FK1:=3*XK*XK-5; XK1:=XK-FK/FK1; FK:=XK1*XK1*XK1-5*XK1-10; If abs(FK)< =E then goto M; XK:=XK1; K:=K+1; goto M1; M: <виведення результатів> … Примітки: 1. Фрагмент програми реалізує розв’язання рівняння, яке розглянуто у прикладі; 2. Вихідними даними є початкове наближення кореня 3. Результати – наближення кореня із заданою точністю ХК1, точність Е і кількість ітерацій k.
Порядок виконання роботи 1. Вибрати індивідуальне завдання. Номер варіанту в Таблиці 1.1. відповідає номеру студента у списку групи; 2. Ознайомитись із теоретичним матеріалом по чисельним методам розв’язання рівнянь; 3. Виконати «ручне» розв’язання заданого рівняння методом Ньютона (до 5 ітерацій); 4. Скласти докладний алгоритм розв’язання рівняння методом Ньютона; 5. Скласти і відлагодити програму на мові Pascal, яка реалізує введення вихідних даних, розв’язання заданого рівняння, виведення результатів у зручній формі на екран і в файл. Основні фрагменти програми оформити як процедури і функції. Описати алгоритм і програму (змінні, масиви, процедури і функції, особливості реалізації тощо); 6. Розв’язати задане рівняння за допомогою розробленої програми з точністю ε =0.01. Порівняти отримані результати із результатами «ручних» розрахунків. Побудувати графік збіжності ітераційного процесу 7. Обчислити корінь рівняння при 5 різних значеннях точності 8. Повторити п.7 з використанням умови (1.6), внісши відповідні зміни у програму. Результати п.6 і п.7 оформити у вигляді таблиці; 9. Обчислити інші дійсні корені рівняння; 10. Підготувати висновки по роботі.
Результати виконання кожного пункту докладно описати у звіті по роботі. Для отримання підвищеної оцінки необхідно на основі наведеного фрагменту програми розробити власну програму.
Таблиця 1.1. Варіанти завдань до Заняття № 1
Заняття № 2 Розробка програми розв’язання систем лінійних алгебраїчних рівнянь (СЛАР) методом Гауса Мета роботи: Закріплення знань із застосування метода Гауса для розв’язання СЛАР, вивчення алгоритму метода, розробка відповідної комп’ютерної програми на мові Pascal і застосування її для розв’язання заданої системи рівнянь
A. Теоретичні відомості Метод Гауса для розв’язання СЛАР
Система n лінійних рівнянь з n невідомими у загальному вигляді може бути записана:
де системи;
У матричній формі ця система рівнянь має вигляд:
або де А - квадратна матриця коефіцієнтів системи розмірністю x - вектор невідомих; В - вектор вільних членів. Розв’язати систему (2.1) - означає обчислити такі значення елементів вектора невідомих Для цього можна застосувати як прямі, так і ітераційні методи. Найбільш поширеним прямим способом розв’язання систем лінійних рівнянь є алгоритм послідовного виключення невідомих, що має назву метод Гауса. Існують різні алгоритми його реалізації. Один із них - метод Гауса із зворотнім ходом для розв’язання СЛАР розглядається у цій роботі. Метод Гауса із зворотнім ходом передбачає виконання двох етапів: прямий і зворотній хід методу. Прямий хід - послідовність однотипних кроків виключення невідомих із системи рівнянь. В результаті його виконання вихідна система (2.1) або (2.2) з прямокутною матрицею коефіцієнтів перетворюється на еквівалентну систему рівнянь з верхньою трикутною матрицею коефіцієнтів. На зворотному ході обчислюються значення невідомих, починаючи з останнього (від
Прямий хід: Перший крок виключення невідомих. Виключаємо невідому
Тобто він повинен бути відмінним від нуля і серед елементів першого стовпця матриці коефіцієнтів в (2.2) найбільшим за абсолютною величиною. В іншому разі переставимо рівняння в системі так, щоб ці умови виконувались.
Ділимо перше рівняння системи (2.1) на опорний елемент
Для виключення складових з невідомим
де номер рівняння в системі, і = 2, …, n; j - номер елемента в рівняннях, j = 1, …, n. На другому кроці виключення невідомих необхідно виключити
Виключаємо доданки з невідомим
де
Наступні кроки виключення невідомих виконуються аналогічно. На k -му кроці коефіцієнти і вільні члени системи рівнянь обчислюються за такими формулами:
де к = 1, …, n-1 – номер кроку виключення невідомих, що збігається з номером рівняння системи, в якому розташований опорний елемент; і = k+1, …, n - номер рівняння, з якого виключається невідома; j = k, …, n - номер елемента в рівнянні.
Опорний елемент
Після виконання останнього ( n-1 ) -го кроку виключення невідомих вихідна система рівнянь перетворюється на еквівалентну систему з верхньою трикутною матрицеюкоефіцієнтів:
Зворотній хід: Обчислюємо значення всіх невідомих, починаючи з
Підставляємо його в передостаннє рівняння і обчислюємо
Послідовно визначаємо
Для перевірки правильності розв’язання системи рівнянь, необхідно обчислені значення невідомих
Приклад розв’язання СЛАР методом Гауса Обчислити корені системи 3-х лінійних рівнянь з трьома невідомими
Прямий хід. Необхідно виконати 2 кроки виключення невідомих. На першому кроці (к=1)виключаємо невідому і виконуємо виключення. Для цього робимо перетворення відповідно до (2.6) при і=2,3; j=1,2,3: і=2, Таким чином, в результаті перетворень, друге рівняння (i=2) набуває вигляду: і=3, Третє рівняння (і=3) набуває вигляду: 0+0.6 Отримуємо еквівалентну систему рівнянь:
На другому кроці (к=2) виключаємо невідому і виконуємо виключення. При і=3, j=2,3 відповідно до (2.9) отримуємо:
і=3 Третє рівняння системи (2.17) набуває вигляду: 0+0.3182 Отримуємо еквівалентну систему рівнянь з трикутною матрицею коефіцієнтів:
Зворотній хід. Із останнього рівняння системи (2.18) знаходимо:
Підставляємо обчислене значення Із першого рівняння системи знаходимо: Таким чином, розв’язком системи є вектор
Для перевірки правильності розв’язання системи рівнянь підставляємо елементи вектора Х у вихідну систему (2.16). Рівняння системи перетворюється на тотожності, що підтверджує правильність її розв’язання.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 185; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.196.177 (0.01 с.) |