Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Фільтри зі змінюваною частотою дискретизації

Поиск

Існує безліч додатків, що вимагають зміни ефективної частоти дискретизації дискретної системи, наприклад, різнотемпові системи. У багатьох випадках ця вимога може бути виконана простою зміною частоти дискретизації АЦП або ЦАП. Однак в більшості випадків бажано виконати перетворення частоти дискретизації після того, як сигнал був оцифрований.

Найбільш загальними методами перетворення є децимація (зменшення частоти дискретизації з коефіцієнтом М) і інтерполяція (збільшення частоти дискретизації з коефіцієнтом L). Коефіцієнти децимації й інтерполяції (М і L) звичайно вибираються цілими числами. У більш загальному випадку може знадобитися дискретизація з коефіцієнтом у вигляді дробу. Зокрема, для перетворення частоти дискретизації 44,1 кГц, використовуваної в програвачах компакт-дисків, у частоту дискретизації 48 кГц, використовувану в цифровому звукозаписі у форматі DAT, здійснюється інтерполяція з коефіцієнтом L=160, супроводжувана децимацією з коефіцієнтом М=147.

Концепція процесу децимації вихідного сигналу КІХ-фільтра проілюстрована на рис. 9.10.

 

Рисунок 9.10 — Децимація дискретного сигналу з коефіцієнтом М

 

Верхня діаграма показує вихідний сигнал зі смугою fa, що дискретизирований з частотою fS. Діаграма, що містить відповідний спектр, показує, що частота дискретизації значно перевищує частоту, необхідну для збереження інформації, що міститься в смузі fa, тобто сигнал зі смугою fa є занадто дискретизованим сигналом. Смуга між частотами fa і fS - fa, не містить корисної інформації. Нижня діаграма показує той же самий сигнал, але частота дискретизації його зменшена з коефіцієнтом М. Незважаючи на знижену частоту дискретизації, ефект накладення спектрів відсутній і втрат інформації немає.

Децимація з великим коефіцієнтом викликає накладення спектрів. Дані y(n) з виходу фільтра зберігаються в регістрі даних, де відбувається стробування за частотою fS / M, що відповідає частоті дискретизації після децимації. У даному випадку децимація не змінює обсягу обчислень, необхідних для реалізації цифрового фільтра, тобто фільтр повинний обчислювати кожен вихідний відлік y(n).

Процес децимації можна сполучити з процесом КІХ-фільтрації (рис.9.11).

Представлений метод, що може використовуватися для збільшення з коефіцієнтом М обчислювальної ефективності КІХ-фільтра. Дані з регістрів затримки зберігаються в N регістрах даних, що стробуються частотою, що відповідає частоті дискретизації після децимації fS / M. Операції множення з накопиченням у КІХ-фільтрі тепер повинні виконуватися тільки в кожному М-ному тактовому циклі. Цей виграш в ефективності може бути використаний для реалізації фільтра з великою кількістю ланок і для проведення додаткових обчислень.

Рисунок 9.11. — Сполучення децимації і КІХ-фільтрації.

 

Концепція інтерполяції включає наступне (рис. 9.12). Вихідний сигнал дискретизований частотою fS. Частота дискретизації збільшується з коефіцієнтом L та додаються нулі для заповнення додаткових відліків. Сигнал з доданими нулями пропускають через фільтр інтерполяції, що формує додаткові дані в точках, раніше заповнених нулями.

Рисунок 9.12 — Ефекти інтерполяції в частотній області

 

Вихідний сигнал, дискретизований частотою fS. Інтерпольований сигнал має частоту дискретизації. Прикладом використання інтерполяції є ЦАП програвача компакт-дисків, де дані генеруються з частотою 44,1 кГц. Якщо ці дані надходять безпосередньо на ЦАП, то вимоги до ФНЧ на виході ЦАП надзвичайно високі. Звичайно використовується інтерполюючий ЦАП з надлишковою дискретизацією. Вимоги до аналогового ФНЧ спрощуються. Це важливо для реалізації фільтра з відносно лінійною фазовою характеристикою і для скорочення вартості фільтра.

Цифрова реалізація інтерполяції. Вихідний сигнал x(n) спочатку пропускають через експандер частоти, що збільшує частоту дискретизації з коефіцієнтом L та вставляє додаткові нулі (рис. 9.13). Потім дані проходять через інтерполяційний фільтр, що згладжує дані й інтерполює проміжні значення між вихідними точками даних. Ефективність цього фільтру можна підвищити, використовуючи алгоритм фільтрації, у якому вхідні відліки з нульовим значенням не вимагають операцій множення з накопиченням. Використання процесора, що підтримує циклічні буфери і цикли, реалізовані без додаткових операцій перевірки умови завершення циклу, також поліпшує ефективність реалізації фільтрів.

 

Рисунок 9.13 — Типова реалізація процесу інтерполяції

 

Ефективні алгоритми ЦОС використовують:

§ множення на 0;

§ циклічні буфери;

§ реалізацію циклів з автоматичною перевіркою умов.

Інтерполятори і дециматори можуть спільно використовуватися для виконання перетворення частоти дискретизації з дробним коефіцієнтом. Спочатку вхідний сигнал інтерполюється з коефіцієнтом L, а потім піддається децимації з коефіцієнтом М. Результуюча вихідна частота дискретизації дорівнює . Щоб зберегти максимально можливу смугу частот у сигналі, що є проміжним результатом, інтерполяція повинна бути здійснена перед децимацією. У противному випадку частина смуги вихідного сигналу була б відфільтрована дециматором.

Характерним прикладом є перетворення частоти дискретизації програвача компакт-дисків, що дорівнює 44,1 кГц, у частоту дискретизації, використовувану при цифровому звукозаписі у форматі DAT, що дорівнює 48,0 кГц. Коефіцієнт інтерполяції при цьому дорівнює 160, а коефіцієнт децимації — 147. На практиці, інтерполяційний фільтр і фільтр, що проріджує, поєднуються в один фільтр .

 

Адаптивні фільтри

На відміну від аналогових фільтрів, характеристики цифрових фільтрів можуть бути легко змінені шляхом зміни коефіцієнтів. Тому цифрові фільтри привабливі в системах підвищення точності вимірювань, комунікаційних додатках, таких як адаптивний еквалайзінг, компенсація відлуння, придушення шуму і т.д. Основна ідея адаптивної фільтрації представлена на рис. 9.14.

 

Рисунок 9.14. — Адаптивний фільтр.

 

Мета процесу адаптації полягає в перетворенні (фільтруванні) вхідного сигналу x(n) таким чином, щоб він відповідав опорному сигналу d(n) з найменшою похибкою. Для генерації сигналу помилки опорний сигнал d(n) віднімається з відфільтрованого сигналу y(n). Сигнал помилки керує алгоритмом адаптації, що генерує коефіцієнти фільтра, які мінімізують сигнал похибки між опорним і вхідним. Найбільш популярними алгоритмами є метод найменших квадратів (least-mean-square) і рекурсивний метод найменших квадратів (recursive-least-squares).

Адаптивний фільтр застосовують для компенсації ефектів амплітудних і фазових спотворень у каналі передачі. Включає два незалежні режими навчання та роботи. В першому режимі навчання мінімізується похибка між заданою апріорі навчальною послідовністю виходу, що представляє відомий зразок даних, і фактичною послідовністю на виході фільтра (визначеною заданою навчальною послідовністю входу). Зміна коефіцієнтів адаптивного фільтра відбувається за допомогою алгоритму адаптації під впливом вказаної похибки. Алгоритм адаптації корегує коефіцієнти фільтра для одержання відповідності між прийнятими даними і даними навчальної послідовності. Зміна коефіцієнтів фільтра приводить до зменшення похибки і в той термін часу, коли вона досягає заданого мінімального рівня, відбувається переключення комутаторів. Тоді процес навчання закінчено і починається робочий, переключенням комутаторів в другу позицію. Фільтр налаштований на передачу робочих даних. Режими навчання і роботи виконуються окремо. Під час режиму навчання робочий режим неможливий.

Якщо навчальна послідовність змінюється за часом, необхідно періодично переключати систему в режим навчання. Переключення комутаторів відбувається тоді, коли за рахунок нестаціонарності процесу модель не відповідає заданій послідовності. Знову починається процес нового навчання. Найбільш ефективним є суміщення режимів навчання та робочого, що приводить до дуальності управління.



Поделиться:


Последнее изменение этой страницы: 2016-08-06; просмотров: 389; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.109.159 (0.008 с.)