Прямое произведение множеств.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Прямое произведение множеств.



Прямым (декартовым) произведением множеств А и В называется множество всех пар (а, в) таких, что а А и в В.

Обозначение: А В.

Если А = В, то А В =А2 и называется декартовым квадратом.

Приведем формулировку определения прямого произведения n множеств:

Прямое произведение множеств А1 , А2 , …, Аn есть множество всех векторов (а1 , а2 , а3 ,…, аn) длины n таких , что а1 А1 , а2 А2 , …, Аn .

Если А1 = А2 = … = Аn , то А1 А2 Аn = Аn и называется декартовой степенью.

Теорема о мощности прямого произведения множеств.

Пусть - конечные множества. Соответственно мощности этих множеств равны:

Тогда мощность прямого произведения множеств равна произведению мощностей соответствующих множеств, т.е.

Доказательство методом математической индукции.

Для теорема тривиально верна. Предположим, что она верна и для и докажем ее справедливость для

По предположению . Возьмем любой вектор из и припишем справа элемент . Это можно сделать способом, т. е. получим различных векторов из .

Таким образом, из всех векторов приписыванием справа элемента из можно получить векторов, причем все они различны. Поэтому для теорема верна и, следовательно, верна для любых .

Следствие:


Понятие соответствия между множествами.

Определение. Соответствием между множествами А и В называется некоторое подмножество G их декартова произведения: G= А В.

Если (a;b) , то говорят, что b соответствует a при соответствии | А В.|=G . При этом множество всех таких называют областью определения соответствия , а множество соответствующих значений называются областью значений соответствия . В принятых обозначениях, каждый элемент , соответствующий данному элементу называется образом при соответствии , наоборот, элемент называется прообразом элемента при данном соответствии.

Соответствие называется полностью определённым, если , то есть каждый элемент множества имеет хотя бы один образ во множестве ; в противном случае соответствие называется частичным.

Соответствие называется сюръективным, если , то есть если каждому элементу множества соответствует хотя бы один прообраз во множестве .

Соответствие называется функциональным (однозначным), если любому элементу множества определения соответствует единственный элемент множества значения.

Соответствие называется инъективным, если оно является функциональным, и при этом каждый элемент множества имеет не более одного прообраза.

Соответствие называется взаимнооднозначным (биективным), если любому элементу множества соответствует единственный элемент множества , и наоборот. Можно сказать также, что соответствие является взаимнооднозначным, если оно является полностью определённым, сюръективным, функциональным, и при этом каждый элемент множества имеет единственный прообраз.


4. Понятие отображения множеств.

Одним из важных понятий математики, есть понятие отображения, которое непосредственно связано с понятием соответствия, описывая его. Понятие отображения часто ассоциируется с понятием функции.

Для задания отображения f необходимо указать:

1. Область определения – множество, которое отображается. Область определения задается изначально. Обозначается D(f). Элементы области определения называют аргументами.

2. Область значений – множество, к которое или на которое отображается заданная область. Область значений. Обозначается E(f)

Правило (закон, соответствие) между D(f) и E(f).

Отображения можно записывать в т виде: f:A→B, , B=f(A), B=F(A), y=f(x) и др.

При отображении, в том числе и однозначном отображении, количество образов равно или меньше числа прообразов. Это следует из того, что несколько элементов из области определения могут отобразиться в один и тот же элемент множества значений.

Задание отображений.

Для задания (записи) отображений используются следующие основные способы:

Аналитический способ – в виде формулы.

Табличный способ. В первой строчке таблицы записываются элементы (числа) области определения, во второй – элементы множества значений.

Графический способ – на координатной плоскости.

С помощью графов - двух кругов или иных геометрических фигур и стрелок.

Словесный способ – в виде текста , описывающего закон соответствия

Виды отображений.

Отображения делятся на два вида: отображения “в” и “на”.

Пусть задано отображение B=f (A)

1. Отображение “в” – инъекция. Соответствие, при котором каждому элементу множества A соответствует единственный элемент множества B, а каждому элементу множества B соответствует не более одного прообраза из A. При этом, мощность множества A меньше мощности множества B.

2. Отображение “на” – сюръекция. Соответствие, при котором каждому элементу множества A соответствует единственный элемент множества B, а каждому элементу множества B соответствует хотя бы один прообраз из A. При этом, мощность множества A больше или равна мощности множества B.

Особое место занимают взаимнооднозначные отображения (соответствия).

Взаимнооднозначное отображение (соответствие) – биекция. Соответствие, при котором каждому элементу множества A соответствует единственный элемент множества B и каждому элементу множества B соответствует один прообраз из множества A. При этом мощность множества A равна мощности множества B.

Множества будут равномощными (равносильными, эквивалентными), если между ними можно установить (задать) взаимнооднозначное соответствие.

Для взаимнооднозначных отображений, обратное отображение также является взаимнооднозначным отображением.


 



Последнее изменение этой страницы: 2016-08-14; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.235.184.215 (0.007 с.)