Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Срок (ориентировочный) службы ламп накаливанияСодержание книги
Поиск на нашем сайте
В осветительных установках производственных зданий применяются лампы типа КГ 220-1000, КГ 220-1500 и КГ 220-2000 для напряжения 220В, мощностью 1000, 1500 и 2000 Вт. Их световая отдача 22 лм/Вт, продолжительность горения 2 тыс. ч. Эти лампы отличаются большой стабильностью светового потока, который снижается к концу срока службы только на несколько процентов. Лампы накаливания для общего освещения могут применяться во вспо-могательных и подсобных помещениях без постоянного пребывания людей и в некоторых производственных помещениях с грубыми зрительными работами, не требующими высокой освещенности. Лампы накаливания должны применяться для общего освещения также в случаях, когда по тем или иным причинам невозможно или недопустимо использование газоразрядных ламп. К числу таких случаев относятся: • осветительные установки, питаемые постоянным током или • установки, в которых могут иметь место хотя бы кратковременные понижения напряжения до уровня ниже 90% номинального; • при специальных требованиях по ограничению радиопомех; • помещения с условиями среды, для которых отсутствуют светильники с газоразрядными лампами (например, взрывоопасные, с высокой температурой воздуха и т.п.); • установки местного освещения; • аварийное освещение помещений, рабочее освещение которых выполняется лампами ДРЛ (дуговые ртутные люминесцентные), ДРИ (дуговые ртутные с йодидами), ДНТ (дуговые натриевые трубчатые) во всех случаях или люминесцентными лампами в помещениях, где температура воздуха может быть ниже+10 °С. ГОСТ 2239-79 «Лампы накаливания общего назначения» распространяется на лампы накаливания, предназначенные для светильников внутреннего и наружного освещения, а лампы на повышенное напряжение 225-235, 235-240В следует применять в осветительных приборах, устанавливаемых в трудно-доступных местах помещения: лестничных клетках, чердаках, вентиляционных камерах и др. Использовать лампы на повышенное напряжение в сетях со стабильным напряжением 220 В нецелесообразно из-за резкого снижения светового потока. К лампам накаливания предъявляются высокие требования: • лампы должны изготавливаться в климатическом исполнении ГОСТ 15543-70; • лампы должны быть прочными в условиях эксплуатации ГОСТ 17516-72; • требования безопасности должны соответствовать ГОСТ 12.2.007.13-75; • для проверки соответствия ламп требованиям ГОСТ 2239-79 Газоразрядные и люминесцентные лампы Различают газоразрядные лампы низкого давления - люминесцентные и ртутно-кварцевые лампы высокого давления типа ДРЛ (дуговая ртутная люминесцентная). Для освещения производственных и общественных помещений, как правило, предусматриваются газоразрядные лампы. Широкое распространение получили люминесцентные лампы, исполь-зуемые для создания особо благоприятных условий зрительной работы (при выполнении точных работ, в учебных помещениях и др.), в помещениях с недостаточным естественным освещением, в которых постоянно пребывают люди, а также при работах с различением цветных оттенков. Принцип действия люминесцентных ламп основан на использовании фотолюминесцентных люминофоров, возбуждаемых ультрафиолетовым излу-чением электрического разряда в парах ртути при низком давлении (5 -10 Па). Невидимое ультрафиолетовое излучение плазмы (ионизированных паров метал-ла) преобразуется с помощью люминофоров в излучение, ощущаемое глазом. Существуют люминесцентные лампы с разрядом в инертных газах – без-ртутные лампы, которые имеют три важных преимущества: они нетоксичны, работоспособны при низких температурах и пригодны для люминофоров, возбуждающихся коротковолновыми ультрафиолетовыми излучениями. Све-товая отдача и срок службы у них значительно ниже, что ограничивает применение этих ламп. Люминесцентные лампы по сравнению с лампами накаливания обладают рядом преимуществ: • высокой световой отдачей (до 95 лм/Вт, что в 4-5 раз больше, чем у ламп накаливания); • большим сроком службы (до 15000час); • малой себестоимостью изготовления в связи с высокой степенью механизации, простотой конструкции, доступностью сырья и материалов; • благоприятным спектром излучения, обеспечивающим качество цветопередачи; • большой длиной трубки при низкой температуре ее поверхности, что позволяет размещать лампы близко к работающим и обеспечивать равномерное распределение освещенности в поле зрения. Наряду с достоинствами люминесцентные лампы имеют следующие недостатки: • малая мощность (4-150) Вт, что недостаточно для освещения высоких помещений; • большие размеры трубок; • трудность перераспределения и концентрации их светового потока в пространстве; • ненадежная работа при низких температурах окружающей среды; • подключение к электрической сети только через пускорегулирующие аппараты (ПРА), причем напряжение на люминесцентных лампах при горении должно быть приблизительно вдвое ниже напряженности в сети; • снижение напряженности сети приводит к снижению светового потока и уменьшению ресурса работы лампы. Люминесцентные лампы предназначены для освещения в различных областях применения. Конструктивно подразделяются на прямые, трубчатые, фигурные (U -образные) и кольцевые (рис. 4.7).
Рис.4.7. Люминесцентные лампы: а) прямые трубки; б) U – образные; в) кольцевые; г) компактные Газоразрядные лампы высокого давления Ртутные лампы высокого давления представляют собой трубку большей частью из кварцевого стекла, по концам которой впаяны активированные вольфрамовые электроды. Внутрь трубки после тщательного обезвоживания вводится строго дозированное количество ртути и спектрально чистый аргон при давлении 1,5-3 кПа. Аргон служит для облегчения зажигания разряда и защиты электродов от распыления в начальной стадии разгорания лампы, так как при комнатной температуре давление паров ртути очень низкое (около 1,5 Па). В отдельных типах ламп кварцевая разрядная трубка помещается в вакуумированную внешнюю колбу. Лампы включают в сеть с соответствующей пускорегулирующей аппаратурой. Общий вид и габаритные размеры некоторых ламп показаны на рис.4.8.
Рис 4.8. Общий вид и габаритные размеры некоторых ламп Выбор источников света Газоразрядные лампы должны применяться, как правило, для общего освещения: помещений с работами разрядов I-IV и VII, с недостаточным или отсутствующим естественным освещением, для общего освещения в системе комбинированного освещения, в общественных, административных и других зданиях, кроме вспомогательных помещений. В указанных случаях допустимо использовать лампы накаливания, если технически невозможно применение газоразрядных ламп. Для местного освещения применение люминесцентных ламп желательно. Люминесцентные лампы неизбежно используются при повышенных требо-ваниях к цветопередаче независимо от разряда работы. Увеличение высоты и усложнение доступа являются противопоказаниями для освещенности люминесцентными лампами. В неотапливаемых помещениях люминесцент-ные лампы не применяют. Допускают применение в одном помещении ламп разных типов: для общего и местного освещения, для рабочего и аварийного освещения.
Светильники Создание в производственных помещениях высококачественного и эконо-мичного освещения невозможно без применения рациональных светильников. Электрический светильник представляет собой совокупность источника света и арматуры. Наиболее важной функцией осветительной арматуры является перераспре-деление светового потока, которое повышает экономичность осветительной установки. Для характеристики светильника с точки зрения распределения световой энергии в пространстве составляют кривую светораспределения - характеристику силы света в полярной системе координат (рис. 4.9). Другим не менее важным назначением осветительной арматуры является предохранение глаз работающих от воздействия чрезмерно больших яркостей источников света. Применяющиеся источники света имеют яркость колбы, в десятки и сотни раз превышающую допустимую яркость в поле зрения. Степень возможного ограничения слепящего действия источника света определяется защитным углом светильника. Защитный угол - это угол между горизонталью и линией, соединяющей нить накала (поверхность лампы) с противоположным краем отражателя (рис. 4.10). Осветительная арматура служит для предохранения источника света от загрязнения и механического повреждения. Она необходима также для подвод-ки электрического питания и крепления ламп. Выбор тех или других светиль-ников по светораспределению зависит от характера выполняемых в помеще-нии работ, возможности запыления воздушной среды, коэффициентов отражения окружающих поверхностей и др.
Рис. 4.9. График распределения силы Рис. 4.10. Защитный угол света в пространстве: 1 – лампа светильника: а – светильник накаливания; 2 – та же лампа с лампой накаливания; б – све- установленная в светильнике типа тильник с люминесцентными «Астра-23» лампами Важной характеристикой светильника является его коэффициент полезного действия. Осветительная арматура поглощает часть светового потока, излучаемого источником света. Отношение фактического светового потока светильника к световому потоку помещенной в него лампы называется коэф-фициентом полезного действия. По распределению светового потока в пространстве различают светиль-ники прямого, преимущественно прямого, рассеянного, отраженного и преиму-щественно отраженного света, (рис. 4.11) Рис 4.11. Методы освещения
По степени защиты от пыли, воды и взрывов в соответствии с правилами устройств электроустановок (ПУЭ) различают следующие светильники: • светильники открытые - лампа не отделена от внешней среды; • защищенные - лампа отделена от внешней среды оболочкой, допускаю-щей свободный проход воздуха; • закрытые - оболочка защищает от проникновения крупной пыли; • пылезащищенные - оболочка не допускает проникновения внутрь све-тильника тонкой пыли; • влагозащищенные - корпус и патрон противостоят воздействию влаги и обеспечивают сохранность изоляции вводных проводов; • взрывозащищенные, которые делятся на взрывонепроницаемые (В) - оболочка светильника выдерживает полное давление взрыва, продукты взрыва должны выходить из светильника через щели охлажденными; повышенной надежности против взрыва (Н) - исключается возникновение искры, электрической дуги или опасных температур на поверхности светильника. Кроме того, необходимо учитывать целесообразное для рассматриваемого случая светораспределение. Основные образцы светильников с лампами накаливания и основные типы светильников внутреннего освещения (см. рис. 4.12; 4.13) а также типы светильников внутреннего освещения с люминесцентными лампами (см. рис. 4.14). Главное требование к светильникам любого назначения и исполнения - светильники должны быть рассчитаны так, чтобы при нормальной эксплуа-тации они не представляли угрозы имуществу, здоровью и жизни людей.
Рис. 4.12. Светильники с лампами накаливания для производственных зданий: а - ЛПД2, «Астра-32»; б - УПД, Гс-М, ГсУ-М, СУ-М, «Астра- 1», «Астра-2», «Астра-12»; в - УПС, «Астра-2», «Астра-22», «Астра-23»; г-УПМ-15; д-у-15; е-УП-24; ж - НСП07; з - ППД-500; и-ППР-500; к-ППД- 100, ППД-200; л - НСП03; м - НСП02, ППР-100, ППР-200; н - НСР01, НСП09; о - НПП 01; п - артикул 135(ПСХ).
Рис. 4.13. Светильники с лампами накаливания для общественных зданий, получивших наибольшее распространение: а - НПБОО, ПЛ-11, арт. 38; б-арт.198, ПЛ-11А; в – НП091; г – ПП- 07; д – НПП07; е – НПО19;НПО20);ж - ПУН-60М; з - ПУН-100М; и – НБО05; к-НС-2; л-НСП-14; м - арт.341; н - арт. 254; о - БУН-60М; п - ПО-02; р - ПО-21; с - ПКР-2 (арт. 119); т - СК-300; у - ПЛК-150; ф - ПКР-300
Размещение светильников В плане и разрезе помещения размещение светильников определяется следующими размерами (рис. 4.15): H - высотой помещения; h с - расстоянием светильников от перекрытия («свесом»); h п= H - h с - высотой светильника над полом; h р - расчетной высотой; L - расстоянием между соседними светиль-никами или рядами люминесцентных светильников (если они расположены по длине и ширине помещения, то расстояние между ними обозначается La Lв); l - расстояние от крайних светильников (или ряда светильников) до стен. Важное требование при выборе светильников - доступность их для обслу-живания. Рекомендуемая высота подвеса светильников 2,5 м при установке на стойках вдоль ограждений технологических площадок, не более 3,5 м при установке на стенах и потолках площадок верхних отметок. Расстояние от крайних светильников до стен принимается в пределах 0,3 - 0,5 расстояния между соседними светильниками в зависимости от наличия вблизи стен рабочих мест. Светильники с «точечными» источниками света располагаются по вершинам квадратных, прямоугольных или треугольных полей. В узких помещениях допустимо однорядное расположение. При прямоугольных полях рекомендуется La / Lв ≤ 1,5, где La и Lв - расстояние по длине и ширине помещения. Причем увеличение L в одном направлении следует компенсировать увеличением его в другом. Светильники с люминесцентными лампами в помещениях для работы рекомендуется устанавливать рядами, преимущественно параллельно длинной стороне помещения или стене с окнами. Некоторые преимущества имеют непрерывные ряды или ряды с неболь-шими разрывами (светящимися линиями). При выборе расстояния между соседними светильниками необходимо руководствоваться величиной λ = L / hp. Величина λ зависит от типа кривых светораспределения светильников, λ = 0,6 ± 2,6. Например, для люминесцен-тных ламп с равномерным светораспределением λ = 2. Средства индивидуальной защиты органов зрения Для защиты глаз от механических повреждений, лучистого и теплового воздействия применяют специальные очки, щитки, маски. Стекла очков лучше использовать небьющиеся из сталинита. Очки не должны ограничивать поле зрения, должны быть легкими, не раздражать кожу, хорошо прилегать к лицу и не покрываться влагой. Для защиты глаз от лучистой энергии, ультрафиолетовых и инфракрасных лучей, яркого света применяют очки со специальными светофильтрами типа «ТИС». При газосварке применяют защитные очки с желто-зелеными светофильтрами различной насыщенности в зависимости от яркости пламени горелки. Для защиты глаз и лица при электросварке применяют щитки и маски. При подборе защитных очков для лиц с плохим зрением (близорукость, дальнозоркость) и особенно для лиц, выполняющих особо точные работы, желательно защитные функции очков сочетать с коррекцией зрения и подбирать специальные (оптические) стекла.
Рис. 4.15. Схема размещения светильников в помещении: а - схема размещения светильников в разрезе помещения; б, в – схема размещения светильников в плане помещения для ламп накаливания и люминесцентных ламп соответственно Эксплуатация осветительных установок. Контроль освещения Тщательный и регулярный уход за установками естественного и искусственного света имеет значение для создания рациональных условий освещения, в частности, обеспечения требуемых величин освещенности без дополнительных затрат электроэнергии. В установках с люминесцентными лампами и лампами ДРЛ необходимо следить за исправностью схем включения (не должно быть видимых глазу миганий ламп), а также пускорегулирующих аппаратов, о неисправности кото-рых, например, можно судить по значительному шуму дросселей (необходимо их исправить или заменить). Сроки чистки светильников и застекления в зависимости от запыленности помещения предусматриваются действующими нормами и должны произво-диться для стекол световых проемов (не реже двух раз в год для помещений с незначительным выделением пыли) и не реже четырех раз в год для помеще-ний со значительными выделениями пыли, для светильников - от четырех до двенадцати раз в год в зависимости от характера запыленности производ-ственного помещения. Своевременно должна производиться замена перегоревших ламп, которая осуществляется двумя способами: индивидуальным - заменяются лампы после выхода их из строя, и групповым - через определенный интервал одновременно заменяются и перегоревшие и работающие лампы (ДРЛ через 7500 ч, люминес-центные 40 Вт - через 8000 ч, люминесцентные 65-80 Вт - через 6300 ч). На крупных предприятиях (при установленной общей мощности на освещение свыше 250 кВт) следует иметь специально выделенное лицо, ведающее эксплуатацией освещения (инженер или техник). При оценке производственного освещения не реже одного раза в год после очередной чистки светильников и замены перегоревших ламп следует прове-рять уровень освещенности в контрольных точках. В настоящее время основным прибором для измерения освещенности является объективный люкс-метр (Ю-116,Ю-117), основанный на явлении фотоэлектрического эффекта. Полученная фактическая освещенность должна быть больше или равна нормируемой освещенности, умноженной на коэффициент запаса. При несоб-людении этого соотношения осветительная установка непригодна для дальней-шей эксплуатации и требует реконструкции или капитального ремонта.
|
|||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-14; просмотров: 322; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.107.159 (0.015 с.) |