How to Create a Web Page in 25 Steps 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

How to Create a Web Page in 25 Steps



(Manual)

1. Download a piece of Web authoring software - 20 minutes.
2. Think about what you want to write on your Web page - 6 weeks.
3. Download the same piece of Web authoring software, because they have released 3 new versions since the first time you downloaded it - 20 minutes.
4. Decide to just steal some images and awards to put on your site - 1 minute.
5. Visit sites to find images and awards, find 5 of them that you like - 4 days.
6. Run setup of your Web authoring software. After it fails, download it again - 25 minutes.
7. Run setup again, boot the software, click all toolbar buttons to see what they do – 15 minutes.
8. View the source of others' pages, steal some, change a few words here and there - 4 hours.
9. Preview your Web page using the Web Authoring software - 1 minute.
10. Try to horizontally line up two related images - 6 hours.
11. Remove one of the images - 10 seconds.
12. Set the text's font color to the same color as your background, wonder why all your text is gone - 4 hours.
13. Download a counter from your ISP - 4 minutes.
14. Try to figure out why your counter reads "You are visitor number -16.3E10" - 3 hours.
15. Put 4 blank lines between two lines of text - 8 hours.
16. Fine-tune the text, then prepare to load your Web page on your ISP – 40 minutes.
17. Accidentally delete your complete web page - 1 second.
18. Recreate your web page - 2 days.
19. Try to figure out how to load your Web page onto your ISP's server – 3 weeks.
20. Call a patient friend to find out about FTP - 30 minutes.
21. Download FTP software - 10 minutes.
22. Call your friend again - 15 minutes.
23. Upload your web page to your ISP's server - 10 minutes.
24. Connect to your site on the web - 1 minute.
25. Repeat any and all of the previous steps - eternity.

The little boy greeted his grandmother with a hug and said, "I'm so happy to see you grandma. Now maybe daddy will do the trick he has been promising us."

The grandmother was curious. "What trick is that my dear," she asked.

The little boy replied, "I heard daddy tell mommy that he would climb thewalls if you came to visit us again."

 

 

II-3 Модальность

В языке существует грамматическая категория модальности, передающая отношение говорящего (или пишущего) к предмету своего высказывания.

Модальность может выражаться различными средствами (Например, с помощью модальных слов: perhaps, probably, evidently, doubtless и др.). Мы рассмотрим глагольные способы выражения модальных оттенков долженствования и возможности, наиболее часто встречающиеся в английских научно-технических текстах.

а) Долженствование:

Must

Must в сочетании с инфинитивом смыслового глагола (который теряет здесь показатель инфинитива - частицу to) выражает необходимость или неизбежность совершения действия в силу определенных обстоятельств, а также служит для выражения совета или приказания.

Переводится на русский язык с помощью должен, или безличными оборотами нужно, надо, необходимо:

Force must be applied to produce motion. Чтобы вызвать движение, необходимо приложить силу.
In passing through the metal electrons must collide with many ions. При прохождении через металл, электроны должны сталкиваться со многим ионами.

Сочетание глагола must с инфинитивом в пассивной форме удобнее всего переводить безличным или неопределенно-личным предложением (надо, нужно, необходимо, следует):

То melt potassium chloride, а temperature of 360° must be reached. Чтобы расплавить хлористый калий, необходимо поднять температуру до 360°.

Выражение one must переводится безличным оборотом нужно, следует:

One must remember that gamma rays produce а harmful effect on a living organism. Нужно помнить, что гамма - лучи оказывают вредное влияние на живой организм.

То have (to)

Глагол to have в сочетании с инфинитивом смыслового глагола выражает необходимость совершения действия в силу определенных обстоятельств и близок по значению к глаголу must, заменителем которого он часто выступает, и переводится надо, нужно, приходится:

Our scientists had to solve many complicated practical problems in the construction of the first atomic power plant. Нашим ученым пришлось разрешить много сложных практических задач при строительстве первой атомной электростанции.

То be (to)

Глагол to be в сочетании с инфинитивом смыслового глагола выражает необходимость, вытекающую из договоренности или намеченного плана, и переводится должен:

The new line of the Metro is to be commissioned next spring. Новая линия метро должна вступить в строй следующей весной.

Этот оборот часто выражает возможность или допустимость, особенно в отрицательных предложениях и в предложениях с ограничительным словом only:

This book was not to be found anywhere. Эту книгу нельзя было нигде найти.
This kind of information was to be obtained only with great difficulty. Такие сведения можно было получить только с большим трудом.

Нужно иметь в виду, что в некоторых случаях сочетание глагола to be с инфинитивом смыслового глагола не выражает модального оттенка.

В таких предложениях мы имеем составное именное (а не глагольное) сказуемое, в котором глагол to be лишен семантической функции и играет лишь служебную роль глагольной связки.

Глагол to be в этих случаях переводится в зависимости от именной части словами: заключается в (том, чтобы), состоит в том, что (чтобы), является и др. (способы перевода связки to be см. в разделе "Перевод глаголов to have и to be "):

The function of the catalyst is to accelerate the reaction. Функция этого катализатора заключается в том, чтобы ускорить реакцию.

Should

Глагол should в сочетании с инфинитивом смыслового глагола (без частицы to) употребляется со всеми лицами и выражает необходимость, обусловленную моральным долгом или советом, и переводится: должен, следует, следовало бы:

You should lower the voltage in the circuit. Вам следовало бы уменьшить напряжение в цепи.

Выражение one should переводится безличным оборотом - нужно, следует:

One should take into consideration that electrical currents flow only in complete circuits. Нужно принять во внимание, что электротоки проходят только в замкнутых цепях.

Ought to

Глагол ought с последующим инфинитивом смыслового глагола выражает необходимость, обусловленную моральным долгом или советом и аналогичен глаголу should, но употребляется значительно реже и переводится: должен, следует, следовало бы.

Не ought to know the properties of the mixture. Ему следовало бы знать свойства этой смеси.

б) Возможность:

Can

Глагол can в сочетании с инфинитивом смыслового глагола (без частицы to) выражает физическую возможность, способность или умение совершить действие и переводится: мочь, уметь:

Man can subdue atomic energy Человек может подчинить себе атомную энергию.
I can handle the rheostat. Я умею обращаться с реостатом.

Сочетание глагола can с инфинитивом в пассивной форме обычно переводится безличным или неопределенно-личным оборотом:

Electric energy generated at the power station can be transmitted over long distances. Электроэнергию, вырабатываемую на электростанциях, можно передавать на большие расстояния.

Выражение one can переводится можно:

Using a transformer one can transform power at low voltage into power at high voltage and vice versa. С помощью трансформатора можно преобразовать ток низкого напряжения в ток высокого напряжения, и наоборот.

Заменителем глагола can является оборот to be able (to):

Any moving object is able to do work. Любой движущийся предмет может произвести работу.

May

Глагол may в сочетании с инфинитивом смыслового глагола (без частицы to) выражает разрешение или позволение и переводится: могу, можно, разрешено:

You may touch the wire, as the circuit is open. Вы можете дотронуться до провода, т. к. цепь разомкнута.

Глагол may нередко выражает также возможность совершения действия аналогично глаголу can:

One kilogramme of Uranium may produce 20 million kilowatt-hours of electricity. Один килограмм урана может дать 20 миллионов киловатт-часов электроэнергии.

Глагол may может также выражать предположение, в котором говорящий не уверен, и переводится: может быть, возможно:

Не may finish his work to-day. Он, может быть (возможно), окончит работу сегодня.

Упражнения

I. Переведите следующие предложения:

1. Atomic nuclei can interact with neutrons, electrons, and gamma radiation. 2. As we should infer from the vigour with which its constituents combine, water is a very stable substance. 3. The current can flow through a wire only when the circuit is closed. 4. The magnitude of electrical current may vary from a minute amount to a very large quantity. 5. In the ammeter the current which is to be measured flows between terminals A and B. 6. Speaking about the structure of the atom one should remember that the proton is smaller but heavier than the electron. 7. Only very little current should flow through the voltmeter to operate it and its mechanism must be very delicate and fine. 8. To tear away from the liquid the molecule which leaves it should have a large amount of kinetic energy. 9. Elastic limit is the point beyond which one should not attempt deforming the body if it is to return to its original condition. 10. The convocation of international scientific conferences, which are to be attended by scientists from different countries and belonging to different schools, can undoubtedly promote the development of science. 11. The investment in an atomic reactor must be high, but the running cost is so low that something like a large tanker can be run as cheaply on atomic energy as on conventional fuel. 12. Working with picric acid one must remember of its explosive nature. 13. Our scientists had to solve the problem of controlling chain reactions. 14. The nature of the raw material must be taken into consideration in the selection of a method of its analysis. 15. One can obtain better results if the solution is slightly heated. 16. A voltmeter may be connected between any two points whose voltage difference is to be measured. 17. You ought to know the properties of the ingredients. 18. There must be a greater number of turns of wire on the field magnets to produce a magnetic field of adequate strength. 19. If "water gas" is to be used as a source of pure hydrogen, carbon monoxide must be removed. 20. One must remember that any reaction is theoretically reversible. 21. If we are to convert a gas into a liquid, we must increase the attraction of the molecules for one another. 22. The unit of heat should not be confused with the degree of temperature. 23. This explosive may be either a liquid or a solid.

II. Переведите текст, обращая внимание на модальности:

EQUILIBRIUM

With what can we associate the word "equilibrium"? We ought to know that the term applies equally well to a motor-car moving along a straight road at a constant speed. From a scientific point of view an object can be in equilibrium not only when it is standing motionless, but also when it is moving in a straight line at constant speed. On the other hand it would not be in equilibrium if it were increasing speed or slowing down or provided it were going around a corner.

Evidently, when there are no forces pulling or pushing a body, that body must always be in equilibrium. However, objects with forces acting on them may also be in equilibrium. But, then, the forces must balance; that is, their vector sum is to equal zero. Thus, in the case of the speeding automobile there are forces acting, but they balance each other in pairs. The pull of gravity downward is counteracted by the push of the road upward. The driving force supplied by the motor is balanced by air resistance and other frictional forces. However, as the driving force supplied by the motor is greater than the frictional resistance, the car is accelerated.

But sometimes an object may not be in equilibrium even though the vector sum of all the forces is zero. It may have a tendency to rotate unless all the forces are applied at a single point, or unless the tendency to rotate in one direction balances the tendency to rotate in the opposite.

Thus the second condition for equilibrium is that the tendency to rotate should be zero. There are always two requirements for equilibrium: first, the vector sum of all the forces acting on a body should be zero; and, second, there must be no tendency to rotate, that is, the tendency to rotate the body in one direction must be balanced by the tendency to rotate it in the opposite direction.

We have to point out the importance of equilibrium in any engineering design and construction. For example, if a house is to stand, each of its parts must evidently be in equilibrium.

Практикум

IMMISCIBLE QUANTUM LIQUIDS. The wavelike overlap of cooled alkali atoms known as Bose Einstein condensation (BEC) represents a new form of condensed matter in which physicists can pursue studies of fluid dynamics, sound propagation, persistent currents, and many of the coherence phenomena occurring in other "super" states such as superfluids and superconductors. One notable BEC innovation introduced in the past year by Wolfgang Ketterle and his colleagues at MIT was the development of an all-optical trap which can hold condensate atoms in a number of distinct (hyperfine) internal states. And just as helium-3 (which has a magnetic substructure) is a more complex superfluid than nonmagnetic helium-4, so the multi-component MIT condensate ought to exhibit behavior not seen in single-component BEC. Indeed, at the New Horizons in Science meeting in Boston last week Ketterle reported that when he immersed his BEC in a uniform magnetic field and a stream of radio waves, those portions of the condensate in different hyperfine states (m=0 and m=1) quickly segregated themselves into alternating domains (differing in energies equivalent to only a few nanokelvins) as if they were oil and vinegar. Furthermore, these layers unexpectedly persist; in effect this arrangement of the condensate constitutes a metastable macroscopically occupied excited state.

(Найдите в этом тексте орфографическую ошибку, меняющую смысл предложения.)

THE ARROW OF TIME has been directly measured by two groups of physicists, one at CERN in Geneva and one at Fermilab near Chicago. Time reversal (T) is one of those symmetries, along with charge conjugation (or C, the operation which turns particles into antiparticles) and parity (or P, the reversal of a particle's coordinates from x,y,z to -x,-y,-z) that were once thought to be preserved in interactions at the atomic level. But then experiments showed that P, C, and the combination CP were not sacred. And since the triple symmetry of CPT is still thought to be valid, T by itself was thought to be vulnerable. That is, it is not thought that physics does differentiate between the forward or backward movement of time. The two groups have now seen evidence for this T violation in the observed decay rates for neutral K-mesons.

SONIC BANDGAPS, frequency ranges in which sound waves are excluded from a material because of the material's geometrical structure, have been created by researchers in Spain, opening the possibility for a fundamentally new way of soundproofing highways and other sources of noise. Acoustic bandgap materials are analogous to optical bandgap materials (also known as photonic crystals), in which arrangements of thin bars can cause light waves to interfere in carefully controlled ways. Such interference prevents the crystal from transmitting light waves within a certain range of colors. Taking inspiration from such photonic crystals, and from a beautiful outdoor sculpture in Madrid, Francisco Meseguer of the Institute of Material Science in Madrid has designed a metallic structure that produces bandgaps in the audible frequency range for sound waves entering the material from all directions. Described at the recent Acoustical Society of America meeting in Norfolk, this "sound sculpture" consists of one-meter-long metal bars arranged in a hybrid honeycomb-triangular pattern.

CLUSTERING AND COLLAPSE IN GRANULAR MATERIAL.

Collections of grains (salt, sand, sugar, seeds, steel balls, etc.) represent a sort of 4th state of matter. Granular materials share some properties with solids (they bear loads), liquids (they pour), and ideal gases (they constitute collections of non-cohesive particles), but they also have peculiar properties of their own. For one thing temperature is not important. Freezing or baking grains doesn't make them flow any better. The thermal energy of a grain is a trillion times less than the energy it takes to lift one grain on top of another. In an effort to explore the differences and similarities between granular materials and other types of matter, scientists often tumble and shake grains in various containers. In one experiment at Georgetown University a layer of thousands of tiny steel balls on a tray is vertically shaken. This agitated system can be "cooled" by decreasing the amplitude of the shaking. Below a certain "granular temperature" the balls start to cluster together. In a still cooler state, many of the balls collapse (one might say crystallize) into a condensate which remains at rest even as other balls continue to move about. Besides wanting to apply knowledge about granular materials in a variety of industrial settings (foodstuffs, paint mixing, pharmaceuticals, agriculture), researchers hope to find more relations among the many things in the universe that clump and condense (atoms, bacteria, galaxies). Olafsen will report these findings next week at the meeting of the APS Division of Fluid Dynamics in Philadelphia.

DOES CHAOS AFFECT THE COURSE OF AN ARMS RACE?

Yes, it may, particularly when great disparities exist between two nations' economies (as is the case with the US and Iraq), according to a new mathematical model developed by researchers in Japan. In an attempt to mathematically model the feedback between two adversarial nations as each builds up arms stocks, British scientist Lewis F. Richardson published in 1949 a well-known set of equations with variables describing such things as a nation's military spending levels and parameters quantifying factors such as a nation's internal pressure against military spending. This model suffered from shortcomings, most notably that its linear equations provided all too predictable results; critics noted that many arms races spiral unpredictably out of control. In the Japanese researchers' model a nation's reaction to an enemy's weapons buildup is not automatically to build more weapons but is instead a function of the difference in weapons and military spending between two nations. This approach leads to more realistic nonlinear differential equations which quantify concepts normally unknown to physics, concepts such as fear, threat, grievance, and fatigue. Their model shows an arms race can progress in a mathematically chaotic fashion when the economic situation of the two countries is different, but is more predictable when the economies are more comparable.

INTRIGUING INDICATIONS OF CP VIOLATION IN B-MESONS have turned up at Fermilab. CP is the abbreviation for the compound operation which turns a particle into an antiparticle (charge conjugation, or "C") and then sends the particle through a 3-dimensional looking glass (parity reflection, or "P"). A 1964 experiment unexpectedly showed that particles do not necessarily behave the same before and after the CP operation. Because CP violation is thought to account for the apparent fact that matter far outweighs antimatter in the universe physicists are eager to explore the issue further. So far CP violation only has been observed in the decay of K-mesons, which contain rare s (or strange) quarks. Physicists suspect that the mysterious CP violation will also have a role in the decay of B mesons, which contain the ever rarer b (or bottom) quark. To settle this issue, B factories, dedicated electron-positron colliders that will do nothing but produce B mesons, are being built at Stanford and in Japan and elsewhere. But B mesons are already being produced in large numbers at Fermilab. The trouble here, however, is that in proton-antiproton smashups the number of B’s produced is vastly outnumbered by other particles. Nevertheless, the CDF collaboration has painstakingly isolated a number of events in which B's decay into a K-meson and a psi meson. The data analysis can even tell a B from an anti-B meson, and the observed asymmetry in their production is what gives a very tentative indication (based on a modest amount of data) that CP violation is occurring in B mesons. The Fermilab physicists are confident this matter can be pursued at proton machines, especially with Fermilab's much intenser beam, which will be in effect by the spring of 2000. The Stanford B factory should be running a year before that.

A "PERFECT MIRROR," one that efficiently reflects a specified wavelength range of light coming in from all directions, has been built by MIT researchers, opening possibilities for energy-saving windows and better versions of optical fibers for telecommunications. Traditional metallic mirrors can reflect a wide range of colors from all directions, but they typically absorb a few percent of the light that strikes them. More recent "dielectric mirrors" (which consist of alternating layers of insulating materials) are highly reflective, but they work only for a narrow wavelength range of light hitting them straight on. Combining the best properties of both mirror types, the MIT group designed a dielectric mirror consisting of 9 alternating, micron-thick layers of the element tellurium and the polymer polystyrene. The highly contrasting indices of refraction in these layers enabled light (10-15 micron wavelength, in the infrared) coming in from all directions to be reflected at the interfaces. In addition to practical applications, the researchers speculate that this design might allow physicists to confine light for longer amounts of time than previously possible.

THE MARS GLOBAL SURVEYOR laser altimeter, with its 30-cm precision, is rendering the best topographic maps yet for the red planet. Two highlights from a series of articles in the 15 December issue of Geophysical Research Letters-Mars is less flattened than was thought: its mean equatorial and polar radii are measured to be 3396 and 3373 km; and a possible shoreline of a presumed ancient polar ocean was studied.

(CORRECTION. Compare with your search results. A typo affecting a single letter can completely reverse the meaning of a sentence. Thus in the sentence " It is not thought that physics does differentiate between the forward or backward movement of time," " not " should be changed to " now. ")

Physics Phacts
Dedicated to the incurably curious.

Einstein's brain
So whatever became of one of the most famous brains of this century? Well, when Einstein died in 1955; a doctor removed the famous physicist's brain for further study. The rest of him was cremated. Legend has it that the brain was abnormally small. Some said it was the size of a walnut. Where is it now? One source claims that Einstein's brain is somewhere floating in a bottle in Weston, Missouri. Carl Sagan claims that it's in another bottle in Witchita. Perhaps Elvis has had it all along...

Golf on the Moon
Perhaps those astronauts were not kept busy enough by the folks at NASA, but on January 31, 1971, Alan Shepard, Jr., found enough time during his lunar mission to play a bit of golf on the moon. He created a makeshift club out of a six iron and a sample return container. He did, however, have authentic golf balls. With a one handed grip he took a swing - and missed! The second time was a charm, though. It is not known exactly how far the ball went, as his lunar buddies refused to caddy for him.

Paul Dirac and his snappy comeback
Physicist Paul Dirac was known mainly for his contributions to quantum mechanics. He was the first to theorize about the existence of antiparticles. During a question and answer period after a lecture Dirac gave at the University of Toronto, an audience member raised his hand and said, "Professor Dirac, I do not understand how you derived the formula on the top left side of the blackboard." "That is not a question," snapped Dirac, "it is a statement. Next question, please."

What are tachyons?
No, they are not particles with a poor taste in clothing. They are hypothetical particles whose speed is always greater than that of light. You may recall that one of the basic principles of relativity is that no object can travel faster than light. What makes this particle even more interesting is that it is said to have an imaginary mass. Imaginary in this sense refers to the mathematical definition of a number which is multiplied by the square root of -1. The energy of a tachyon is supposed to decrease as its speed increases, approaching zero as its speed heads toward infinity. Various experimental searches have been made for tachyons, with no success so far.

Schroedinger's affair
Erwin Schroedinger, whose name is probably best associated with his damn cat, was, in 1925, a competent but obscure professor of physics at the University of Zurich. Nobel prize winner Leon Lederman best tells this story... all college teachers deserve a Christmas holiday. But this was no ordinary vacation. Leaving his wife at home, Schroedinger booked a villa in the Swiss Alps for two and a half weeks, taking with him his notebooks, two pearls, and an old Viennese girlfriend. Schroedinger's self-appointed mission was to save the patched-up, creaky quantum theory of the time. The Viennese-born physicist placed a pearl in each ear to screen out any distracting noises. Then he placed the girlfriend in bed for inspiration. Schroedinger had his work cut out for him. He had to create a new theory and keep the lady happy. Fortunately he was up to the task. (Don't become a physicist unless you are prepared for such demands.)

The Big Bang bust
The term "Big Bang" started as a putdown. In the 1940's, there were many competing theories about the nature of universe. British astrophysicist Fred Hoyle coined the term "Big Bang" as a snide putdown of his competitors, only to have the term find its way into the general consciousness as the description of the correct theory.

Tesla the paranoid schizophrenic.
Nikola Tesla was one of the pioneers of electrical applications in the late 1800's, and is regarded by some to have been an inventor with skills superior to that of Thomas Edison. To him is attributed the invention of alternating current motors and the transformer.

However, as the years progressed he became... a lonely, uncommunicative egotist, intensely jealous of Edison, unwilling to shake hands for fear of germ contamination, frightened by round surfaces (like billiard balls and pearl necklaces),... and dissipating his great talent by trying to invent death rays, or devices for photographing thoughts on the retina of the eye.

 

 

II-4 Неличные формы глагола

Наряду с личными формами в английском языке существуют неличные формы глагола: герундий, причастие, инфинитив, которые обладают рядом особенностей, что требует осторожного к ним подхода при переводе.

Неличные формы глагола отличаются от личных форм прежде всего тем, что они не имеют категорий лица, числа и наклонения.

Не выражая лица и числа, герундий, причастие и инфинитив не могут согласовываться с подлежащим и, следовательно, самостоятельно никогда не выступают в функции простого сказуемого.

Другой общей особенностью неличных форм является то, что категория времени у них имеет относительный характер, т.е. их временные отличия приобретают значение лишь в сопоставлении со временем личной формы (сказуемого) данного предложения.

В результате особенностей своего возникновения и исторического развития неличные формы глагола близко соприкасаются с неглагольными категориями и обнаруживают тесную связь: герундий и инфинитив - с существительным, а причастие - с прилагательным.

Рассмотрим более подробно в сравнительном плане особенности неличных форм и способы их перевода.

II-4.1 Сопоставление форм с окончанием на -ing

Из числа упомянутых выше неличных форм глагола две формы герундий и причастие I имеют одинаковое окончание -ing. Это обстоятельство осложняется тем, что окончание -ing характерно и для третьей грамматической категории - отглагольного существительного.

Таким образом, к числу форм оканчивающихся на -ing относятся:

Герундий (Gerund):

Voltmeters are used for measuring voltages. Вольтметры применяются для измерения напряжения.

Причастие I (Present Participle)

Measuring voltage we use voltmeters. Измеряянапряжение, мы пользуемся вольтметром.

Отглагольное существительное (Verbal Noun):

The measuring of voltage is effected by means of voltmeters. Измерениенапряжения осуществляется при помощи вольтметра.

Такая грамматическая омонимичность ставит перед переводчиком задачу правильно установить в предложении функцию формы с окончанием -ing с тем, чтобы дать соответствующий перевод.

II-4.2 Герундий и отглагольное существительное

Герундий—особая грамматическая категория, отсутствующая в русском языке.

Название " герундий " (Gerund) произошло от латинского глагола gerere действовать. Оно указывает на то, что посредством герундия выражается выполнение, совершение действия, его процесс.

Семантически герундий имеет сходство с русскими именами действия на -нье, -ние, например: беганье, писание.

Герундий позволяет избегать употребления громоздких придаточных предложений и облегчает создание кратких и сжатых оборотов речи.

Исторически эта форма, оканчивающаяся на -ing, первоначально была чисто субстантивной категорией со всеми признаками существительного.

Постепенно, в течение средне- и новоанглийского периода развития языка, появилась тенденция образовывать существительные с окончанием -ing от глаголов, причем эти отглагольные существительные, естественно, сохраняли и некоторые глагольные свойства.

Так сложилась в языке новая форма, промежуточная между существительным и глаголом - герундий.

Следы двойственной природы герундия сохранились в современном языке в виде двойственности его функций: он имеет черты и существительного, и глагола и сохраняет связь с каждой из этих категорий.

Связь с глаголом:

а) происходит от глагольного корня;

б) имеет временные и залоговые отличия:

I know of his leaving Frisco. Я знаю, что он уезжает из Сан-Франциско.
I know of his having left Frisco. Я знаю, что он уехал из Сан-Франциско.

в) принимает прямое дополнение:

Their aim was exploring the Pole. Их целью было исследование полюса.

г) может определяться наречием:

Writing quickly is tiring. Писать быстро - утомительно.

Отличие от глагола:

Являясь неличной формой глагола, т.е. такой формой, которая не выражает ни категории лица, ни категории числа, герундий не может выполнять функции сказуемого (может быть лишь частью сказуемого).

Связь с существительным:

а) выражает не действие, а лишь название, процесс действия;

б) выполняет в предложении функции существительного, выступая в качестве подлежащего, дополнения, определения, обстоятельства, части сказуемого;

в) сочетается с предлогами, определяется притяжательными местоимениями и существительным в притяжательном падеже.

Отличие от существительного:

а) не может иметь артикля;

б) не может употребляться с номинативным сочетанием (of + существительное);

в) не имеет множественного числа;

г) не может определяться прилагательным.



Поделиться:


Последнее изменение этой страницы: 2016-07-16; просмотров: 376; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.19.31.73 (0.094 с.)