Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Формализация задач из различных предметных областей

Поиск

 

Этот этап самый непростой, для его выполнения нужно умение выделять в предметной области наиболее важные характеристики для решения задачи и выявлять способы решения задач, принятые на практике, а также требуются специальные знания и умения моделирования предметной области. Поэтому часто привлекаются математики (или системотехники - аналитики), если предметная область слишком сложна.

В результате формализации создается математическая модель предметной области, которая записывается средствами различных видов математических моделей, определяются входные и выходные данные для задачи (или комплекса задач). Либо просто формируется строгое описание задачи, поскольку не всякая предметная область может быть описана средствами какой-либо математической модели (так называемые слабо формализуемые или неформализуемые области).

 

Пример 1. Пусть в качестве предметной области рассматривается процесс зачисления абитуриентов в ВУЗ, который хорошо знаком читателю, а потому не требует пространных комментариев. Попробуем формализовать его, определив исходные данные, требуемые для решения задачи, результаты решения, а также сам процесс решения (при этом возможны некоторые упрощения относительно реального положения дел, которые не должны смущать недавнего абитуриента).

Итак, процесс зачисления происходит описанным ниже образом:

1. в приемную комиссию поступают сведения об абитуриенте, включающие данные о его оценках из аттестата о среднем образовании;

2. по мере сдачи вступительных экзаменов оценки, если они положительны, добавляются к имеющимся сведениям об абитуриенте, либо абитуриент исключается из претендентов на зачисление, если экзамен не сдан;

3. когда все вступительные экзамены сданы, список абитуриентов упорядочивается по мере убывания общей суммы оценок по сданным экзаменам с учетом среднего балла по аттестату;

4. первые элементы из списка в количестве, соответствующем объему набора на первый курс, и есть студенты первого курса, фамилии которых вносятся в приказ на зачисление.

 

Таким образом, для решения задачи требуются следующие исходные (входные) данные: фамилия, имя, отчество студента (для различения в списке), оценки из аттестата, оценки за вступительные экзамены, объем набора на первый курс; результат решения (выходные данные) – список студентов первого курса в виде списка фамилий, имен, отчеств; ход решения (последовательность требуемых действий) описан выше.

Формализация выполнена. Ее результат – описание решения в виде последовательности шагов, входные и выходные данные.

 

Пример 2. Пусть на первый курс по некоторой специальности зачислено N студентов. По результатам каждой сессии в течение первых четырех семестров часть студентов отчисляется за неуспеваемость в указанных среднестатистических количествах:

 

семестр, х        
число отчисленных, y        

 

Построить модель изменения численности студентов для определения их количества к дипломному проектированию.

 

Эта задача относится к классу задач экстраполяции функций: определить значение функции y в точке x (xx 0, x n), если известны (n+1) значений функции y в точках x 0, x 1 x 2, …, x n.

 

Решим задачу двумя способами.

 

Первый способ. Используем возможности табличного процессора EXCEL, который позволяет аппроксимировать функцию y, если известны значения функции и ее аргументов в определенном количестве точек. Для этого занесем в таблицу EXCEL исходные данные, построим диаграмму точечного типа и сформируем линию тренда, запросив вывод в диаграмму установленной табличным процессором функциональной зависимости:

 

Как видно из рисунка, сформированная функциональная зависимость имеет вид:

y (x) = 20,777 x -2,1513,

где y – число отчисленных студентов;

x – номер семестра.

Тогда для определения числа оставшихся студентов к пятому курсу (дипломному проектированию) может быть построена модель:

 

st = N – y (10),

 

где st – число оставшихся к дипломному проектированию студентов.

Формальная постановка задачи выполнена.

 

Второй способ. Используем интерполяционный многочлен Лагранжа для формализации задачи (несмотря на то, что этот многочлен решает задачу интерполяции, его можно использовать и для экстраполяции, если экстраполяционная точка не слишком отдалена от исходных точек).

 

В соответствии с принятыми выше обозначениями имеем:

где y i – число отчисленных студентов в i-м семестре;

p i(10) – коэффициент Лагранжа, который рассчитывается по формуле:

и имеет значения из множества { p 1(10), p 2(10), p 3(10), p 4(10)}.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-07-14; просмотров: 1058; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.148.105.152 (0.006 с.)