ТОП 10:

Энергия заряженного конденсатора. Плотность электрической энергии. Энергия системы заряженных тел.



Вычислим энергию заряженного конденсатора. Пусть первоначально обкладки конденсатора не заряжены. Будем переносить положительный (ил отрицательный) заряд малыми порциями с одной обкладки на другую. Для переноса необходимо совершить работу против электрического поля;

,

где — мгновенное значение разности потенциалов между обкладками. Эта работа полностью идет на увеличение электрической энергии конденсатора

.

Интегрируя, получим

.

Энергия взаимодействия точечных зарядов получается при переносе их из бесконечности в то место, где они расположены. Получается формула

,

где штрих при потенциале означает, что при его расчете учитываются все заряды, кроме того, на который они действуют. Для непрерывно распределенных зарядов получается интеграл по объему, занимаемому зарядами

,

где — объемная плотность зарядов.

Так как электрическое поле конденсатора сконцентрировано внутри и однородно, то можно считать, что энергия поля тоже распределена внутри конденсатора. Если разделить вычисленную энергию на объем , где — площадь обкладки, то получится объемная плотность энергии

.

Можно показать, что эта формула верна при любой конфигурации электрического поля.

 

 

Электромагнитная индукция

Электромагнитная индукция была открыта Фарадеем в 1831 г. Для демонстрации этого явления возьмем неподвижный магнит и проволочную катушку, концы которой соединены с гальванометром. Если катушку приближать к одному из полюсов магнита, то во время движения стрелка гальванометра отклоняется — в катушке возбуждается электрический ток. При движении катушки в обратном направлении направление тока меняется на противоположное. Магнит можно заменить другой катушкой с током или электромагнитом. Этот ток называется индукционным током, а само явление — электромагнитной индукцией.

Возбуждение электрического тока при движении проводника в магнитном поле объясняется действием силы Лоренца, возникающей при движении проводника. Рассмотрим простейший случай, когда два параллельных провода и помещены в постоянное однородное магнитное поле, перпендикулярное к плоскости рисунка и направленное на нас. (см. рис.) Слева провода и замкнуты, справа — разомкнуты. Вдоль проводов свободно движется проводящий мостик . Когда мостик движется вправо со скоростью , вместе с ним движутся электроны и положительные ионы. На каждый движущийся заряд в магнитном поле действует сила Лоренца . На положительный ион она действует вниз, на отрицательный электрон — вверх. Электроны начнут перемещаться вверх и там будет скапливаться отрицательный заряд, внизу останется больше положительных ионов. То есть положительные и отрицательные заряды разделяются, возникает электрическое поле вдоль мостика, и потечет ток. Этот ток называется индукционным. Ток потечет и в других частях контура . На рисунке токи изображены сплошными стрелками.

Возникает напряженность стороннего поля, равная .Электродвижущая сила, создаваемая этим полем, называется электродвижущей силой индукции и обозначается . В рассматриваемом случае , где — длина мостика. Знак минус поставлен потому, что стороннее поле направлено против положительного обхода контура, определяемого вектором по правилу правого винта. Величина есть приращение площади контура в единицу времени. Поэтому равна , т.е. скорости приращения магнитного потока, пронизывающего площадь контура . Таким образом,

.

К этой формуле необходимо добавить правило, которое позволяет быстро определять направление индукционного тока. Оно носит название правило Ленца и гласит: Индукционный ток всегда имеет такое направление, что его собственное магнитное поле препятствует изменению магнитного потока, его вызывающего.

Возникающий в проводнике ток исчезает потому, что существует сопротивление. Если бы сопротивления не было, то раз возникнув, ток продолжался бесконечно долго. Такие условия встречаются в сверхпроводниках. Кроме этого, закон электромагнитной индукции позволяет объяснить диамагнетизм в атомах и молекулах. Магнитное поле возникшего дополнительного тока направлено в сторону, противоположную внешнему полю. И так как сопротивления в молекулах нет, то оно не исчезает.

Магнитный поток

После предварительного рассмотрения сформулируем закон в общем виде. Как и в случае электрического поля можно ввести поток индукции магнитного поля:

.

Здесь — площадь контура, через который проходит магнитное поле, — нормаль к площадке, ограниченной контуром. Скалярное произведение может быть заменено на , где — угол между направлениями вектора индукции и нормалью. Если магнитная индукция меняется по величине и направлению, то формула для потока переходит в следующую

.

И напоминаю теорему Гаусса для магнитного потока:

.

Необходимо отметить, что поверхность, на которой вычисляется поток индукции, можно деформировать. Для доказательства рассмотрим рисунок справа. На нем представлен разрез контура (точки и ) и разрез двух поверхностей (кривые и ). Крест в точке и точка — в показывают направление обхода контура, которое связано правым винтом с направлением нормалей на поверхности. Так как поток вектора индукции через замкнутую поверхность равен нулю, то потоки по отдельным поверхностям и равны между собой (с учетом направления векторов нормали). Отсюда следует, что поверхность можно деформировать как угодно.

 







Последнее изменение этой страницы: 2016-08-01; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.215.182.81 (0.004 с.)