Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Формальные правила двоичной арифметикиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Перед тем, как рассмотреть формальные правила двоичной арифметики подчеркнем общий принцип сложения и вычитания чисел представленных в любой позиционной системы счисления. В общем случае процедуры сложения и вычитания двух чисел A B = C в любой позиционной системы счисления начинаются с младших разрядов. Код суммы каждго i -того разряда с i получается в результате сложения a i + b i +1, где единица соответствует переносу из младшего (i - 1)-разряда в i -тый, если в младшем разряде код суммы получился больше или равным основанию системы счисления. Код разности каждого i -того разряда получается в результате вычитания a i - b i -1, где единица соответствует заему, если он был, в младшие разряды величины, равной основанию системы счисления. Следовательно, правила и методы сложения и вычитания в любой позиционной системы счисления в принципе остаются такими же, как в десятичной системе. Теперь рассмотрим правила арифметики с числами, представленными в двоичном коде. Сложение двух чисел выполняется поразрядно, начиная с младшего разряда. В каждом разряде выполняется сложение двух цифр слагаемых и единицы переноса из соседнего младшего разряда: 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0 и осуществляется перенос 1 в старший соседний разряд. Например: 01012 = 510 +00112 = 310 10002 = 810
Вычитание также производится поразрядно, начиная с младшего разряда. При вычитании в данном разряде из нуля единицы необходимо занять единицу из соседнего старшего разряда, которая равна двум единицам данного разряда: 0 - 0 = 0 1 - 0 = 1 1 - 1 = 0 0 - 1 =1 после заема единицы из соседнего старшего разряда. Например: 01102 = 610 -00112 = 310 00112 = 310
Суммирование двоичных чисел в компьютерах осуществляется при помощи двоичных сумматоров, а вычитание - двоичных вычитателей. Но как будет показано в дальнейшем, вычитание можно организовать также при помощи процедуры сложения, т.е. при помощи двоичных сумматоров, если вычитаемое представить в "дополнительном" или "обратном" коде и тем самым исключить необходимость в двоичных вычитателях. Умножение двоичных чисел производится путем образования про-межуточных произведений и последующего их суммирования. Промежуточные поразрядные произведения формируются по следующим правилам:
0 x 0 = 0 101 510 x 310 = 1510 0 x 1 = 0 11 1 x 0 = 0 101 1 x 1 = 1 + 101
Деление чисел в двоичной системе производится по правилам умножения и вычитания. Например: 110: 11 = 10 610: 310 = 210 11 00 Арифметические действия с двоичными числами подробно будут рассмотрены в дальнейшем. При выполнении любых арифметических действий важное значение имеют такие электронные устройства, как двоичный полусумматор и двоичный сумматор, которые выполняют побитное двоичное сложение по ранее приведенным правилам. Для двоичного вычитания иногда используют и двоичный вычитатель. Приведем условное обозначение двоичных полусумматора и сумматора:
ai HS S ci ai SM S ci bi bi P Pi Pi-1 P Pi
а) б)
Рис.2.1 Условное обозначение полусумматора (а) и двоичного сумматора (б).
Здесь a i и b i это i -тые разряды чисел А и В, которые складываются, а c i - i -тый разряд суммы этих чисел, Pi - перенос из данного разряда в соседний следующий старший, Pi-1 - перенос из соседнего младшего в данный разряд. Если для представления двоичных чисел А, В, С и их знаков выделена n -разрядная сетка, то очевидно, что для организации процедуры сложения необходимо n двоичных сумматоров, которые соединяются между собой по определенной схеме, зависящей от того в каком коде представляются эти двоичные числа: прямой, обратный или дополнительный. Очевидно, что в арифметических устройствах цифровых автоматов помимо двоичных сумматоров используются также регистры, счетчики, различные триггера и электронные устройства, выполняющие различные логические процедуры. Обычно используемые регистры должны позволять не только параллельно записывать в них двоичные коды чисел, но и сдвигать изображения этих чисел влево и вправо на необходимое число двоичных разрядов. Простейшую блок-схему узла, выполняющего процедуру сложения A+B=C можно представить следующим образом:
A Pr
CM Pr Pr C B
где Рr - некоторые регистры, в которые записываются двоичные числа А, В и С; СM - сумматор, точнее группа сумматоров n SM, где n - длина разрядной сетки, отведенной для представления чисел А, В и С. Помимо арифметических операций в цифровых автоматах реализуются также логические операции, которые подробно рассматриваются в последующих главах. Кроме этих операций в цифровых автоматах, компьютерах, выполняется еще одна операция над двоичными числами - это сдвиг числа по разрядной сетке влево или вправо. В случае сдвига влево фактически осуществляется умножение двоичного числа на 2, а при сдвиге вправо - деление на 2, где - количество разрядов, на которое сдвигается двоичное число. Например: 0000112= 310 сдвинем влево на 2 разряда, получим 0011002 = 1210, т.е. 3х4(22) = 1210, а теперь 0010002 = 810 сдвинем на 2 разряда вправо, получим 0000102 = 210, т.е. 8:4(22) = 210. В компьютерах часто используется циклический сдвиг, при выполнении которого разрядная сетка, отведенная для операнда, представляется замкнутой в кольцо. Тогда при сдвиге влево содержимое старшего разряда попадает в младший разряд операнда, а при сдвиге вправо - наоборот.
Перевод числа из одной позиционной системы счисления в Другую
Как уже отмечалось, любая обработка информации в компьютере обычно осуществляется в двоичной системе счисления. В то же время, при обмене информации между компьютером и пользователем для большей наглядности представления данных используются десятичная, двоично-десятичная, восьмеричная или шестнадцатеричная системы. Каждый разряд числа в восьмеричном и шестнадцатеричном коде эквивалентен трем и четырем двоичным разрядам соответственно. Поэтому, представление чисел в этих системах счисления получается более компактным и наглядным. Для перевода восьмеричного (шестнадцатеричного) числа в двоичную форму достаточно заменить каждую цифру этого числа соответствующим трехразрядным (четырехразрядным) двоичным числом, при этом отбрасывают ненужные нули в старших разрядах. Например
(3 0 5. 4)8 = 11000101.100(2); 011 000 101. 100
(7 B 2. E)16 = 11110110010.1110(2). 0111 1011 0010. 1110
Для перехода от двоичной к восьмеричной (шестнадцатеричной) системе поступают так: двигаясь от точки влево и вправо, разбивают двоичное число на группы по три (четыре) разряда, дополняя, при необходимости, нулями крайние левую и правую группы. Затем группу из трех (четырех) разрядов заменяют соответствующей восьмеричной (шестнадцатеричной) цифрой. Например: 1) перевод 1101111001.11012 в восьмеричное
001101111001. 110100 = 1571.648; 1 5 7 1 6 4
2) перевод 11111111011.100111(2) в шестнадцатеричное
011111111011. 10011100 = 7FB.9C(16). 7 F B 9 C
Двоично-десятичный код (D-код) ориентирован на наиболее удобную для человека десятичную систему счисления. В нем для записи чисел используются только двоичные цифры 0 и 1. Двоично-десятичный код образуется заменой каждого десятичного разряда в десятичном числе 4-х битовым двоичным представлением этого разряда. Например, 0001 1001 1000 0100(D) = 1984(10)
0001100110000100 1 9 8 4
Для реализации машинных алгоритмов перевода из одной системы счисления в другую существуют различные методы. Так, например, для перевода целого десятичного числа в его двоичный (восьмеричный, шестнадцатеричный) эквивалент используется деление на 2 (8, 16), т.е. выполняется деление на основание новой системы счисления. В процессе такого деления последовательно, начиная с младшего разря-да 2-го (8-го, 16-го) эквивалента, записывается остаток, если он получается на очередном этапе деления десятичного числа. В противном случае записывается ноль. Далее результат очередного деления опять делится на 2 (8, 16), если этот результат больше или равен 2 (8, 16). Если же результат меньше, то он прямо переписывается в старший разряд:
1) 53:2 = 26:2 = 13:2 = 6:2 = 3:2 = 1 (мл. раз.) 1 0 1 0 1 1 (ст. раз.) n\t\ 53(10) = 110101(2).
2) 128:8 = 16:8 = 2 0 0 2 12810 = 2008
3) 128:16 = 8 0 8 12810 = 8016
Для дробных чисел (или дробных частей вещественных чисел) требуется отдельная процедура перевода. В случае неправильной дроби процедура преобразования для целой и дробной частей числа выполняется отдельно. Результат получают путем записи двоичных эквивалентов этих частей соответственно слева и справа от двоичной запятой (точки). Следовательно, при переводе неправильной десятичной дроби целая и дробная части числа переводятся в двоичный эквивалент по разным алгоритмам. Процедуру преобразования десятичной дроби в двоичную рассмотрим на примере преобразования числа 0,375. 1. Преобразование осуществляется умножением дроби на основание системы счисления, в которой дробь должна быть представлена. В данном случае умножаем на 2: 0,375 х 2 = 0.75. Окончательный результат формируется поразрядно, начиная со старшего разряда, к примеру, в некотором трехразрядном регистре С = 0.XXX, где XXX - разрядная сетка мантиссы этого регистра. 2. Если результат <1, то старшему значащему разряду присваивается значение 0; если больше 1, то присваивается 1. Поскольку 0,75<1, то в старший разряд регистра С записывается 0, т.е. С = 0,0XX. 3. Результат предыдущей операции умножения снова умножаем на 2. Заметим, что если бы результат предыдущей операции умножения был больше 1, то в данной операции умножения участвовала лишь его дробная часть. В данном случае 0,75 x 2 = 1,5. 4. Так как результат больше 1, то следующему значащему разряду регистра С присваивается значение 1, т.е. С = 0,01X. 5. Шаги описанной процедуры повторяются до тех пор, пока либо результат умножения не будет точно равен 1, либо не будет достигнута требуемая точность. В нашем примере после выполнения очередного шага результат равен 0,5 x 2 = 1,0. Поэтому очередному значащему разряду регистра С присваивается 1, т.е. окончательно получена двоичная дробь С = 0.0112. Надо отметить, что не всегда путем повторения операций умножения можно достичь результата, точно равного 1. В таком случае процесс останавливается по достижению необходимой точности, а целую часть результата последней операции умножения присваивают младшему значащему разряду.
Расмотрим еще пример: переведем число 0,3437510 в двоичное 2 x 0,34375 = 0,6875 0 (старший разряд - СЗР, результата перевода) 2 x 0,6875 = 1,375 1 2 x 0,375 = 0,75 0 2 x 0,75 = 1,5 1 2 x 0,5 = 1,0 1 2 x 0 = 0 0 (младший разряд - МЗР, результата перевода) Ответ: 0,01011(2)
Для перевода десятичной правильной дроби в восмеричную (шест-надцатеричную) надо умножать ее на 8 (16). Если очередное произведение правильная дробь, то, начиная со старшего разряда результата записываются 0. Если произведение целое и меньше 8 (16), то оно прямо переписывается в соответствующий разряд результата. Например: 1) 0,0625 x 8 = 0,5 0 0,5 x 8 = 4 4 0,062510 = 0,048
2) 0,875 x 16 = 14(E) 0,87510 = 0,E16
Перевод двоичного числа в десятичный его эквивалент можно выполнить при помощи формулы (2.1):
1) 110101(2) = 125+ 124 + 023 + 122 + 021 + 120 = 132 + 116 + 08 + 14 + 02 + 11 = 32 + 16 + 4 + 1 = 53(10). 2) 2008 = 282+ 081 + 080 = 12810 3) 1F16 = 1161+ 15160 = 3110
Таким образом, при переводе числовой информации из одной позиционной системы счисления в другую все действия должны выполняться по правилам арифметики исходной системы счиления.
Глава 3.
|
||||
Последнее изменение этой страницы: 2016-06-23; просмотров: 524; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.188.152 (0.008 с.) |