Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Важнейшее свойство потенциала.Содержание книги
Поиск на нашем сайте
Зададимся вопросом: как выглядит распределение потенциала на поверхности, в любой точке которой g направлено по нормали к этой поверхности, то есть S g. В этом случае cos(g,s)=0 и, соответственно, = 0, а W=const (W =C). Такая поверхность, в любой точке которой сила тяжести (притяжения) направлена к ней нормально, а потенциал W(U) имеет постоянное значение, называется поверхностью равного потенциала или уровенной поверхностью. На такую поверхность действует только нормальная (вертикальная) составляющая g (то есть gz). На такой поверхности устанавливается – не течет – жидкость в сосуде (если пренебречь силой поверхностного натяжения). Из всего мыслимого множества уровенных поверхностей, отвечающих уравнению W=C (C1,C2,C3 –различные значения постоянной соответствуют различным уровенным поверхностям) есть одна, которая существует физически, которую можно «потрогать». Это поверхность невозмущенной никакими горизонтальными (тангенциальными) силами (например, силой ветра) морей и океанов. Будучи мысленно продолженной под континенты она обрисует фигуру Земли, которую называют геоид. Именно геоид принимают за фигуру Земли в геологии, во всех геологических науках, кроме гравиразведки. В гравиразведке, как уже говорилось выше, за фигуру Земли, за ее модель принимают сфероид. Чем они отличаются? Геоид – это эквипотенциальная поверхность реальной вращающейся Земли, тогда как сфероид – эквипотенциальная поверхность воображаемой (модель) вращающейся Земли, у которой все горы выровнены, а моря заполнены на одинаковую глубину. При этом ее масса и объем остаются такими же, как у реальной Земли [4 ]. Почему же гравиметристов не устраивает в качестве модели геоид, а устраивает только сфероид? Дело в том, что геоид это поверхность не идеальная, а ундулирующая. Ундуляции или местные возмущения возникают под действием физических неоднородностей земной коры и топорельефа местности. На рис.4 видно, что из-за притяжения «избытков» масс (например, горных массивов краевых зон континентов) отвес отклоняется в сторону этих масс, а показанная пунктиром уровенная поверхность (всегда перпендикулярная вектору g, который как раз и определяет нить отвеса) образует, таким образом «положительную» ундуляцию (вздымается). Над океаном из-за недостатка масс образуется отрицательная ундуляция.
Рис.4.Ундуляции геоида.
Срезающая эти ундуляции на рис.4 сплошная кривая дает представление об осредненном невозмущенном положении геоида. Такой геоид называют эллипсоидом относимости. Трехосный эллипсоид - это более близкое, чем сфероид приближение к истинной фигуре Земли, поскольку у нашей планеты различаются не только полюсной и экваториальный радиусы. Если рассмотреть само экваториальное сечение, то оно на самом деле окажется не идеальным кругом. Два главных радиуса этого сечения буду различаться примерно на 200 м. В сравнении с различием полюсного и экваториального радиусов, разница между которыми составляет ~21 км, это всего лишь 1%, и тем не менее, эллипсоид – это более точное представление фигуры Земли. Поэтому в большой геофизике именно эллипсоид определяет эту фигуру, но для гравиразведки вполне годится в качестве модели сфероид. Сфероид – это поверхность практически идеальная, близкая к среднему невозмущенному положению геоида и для такой поверхности нетрудно вычислить нормальное поле g0, которое необходимо для получения имеющих геологический смысл аномальных значений Δgа. В целом поверхность земного сфероида незначительно отклоняется от поверхности геоида на морях и океанах – максимум на ±150м.
Градиенты силы тяжести
Сама по себе величина потенциала W непосредственно не измеряется. Измерению подлежат только первые производные Wz, то есть составляющие g, в частности g(z) и вторые производные потенциала Wzx и Wzy, именуемые градиентами силы тяжести
Вторые производные Wzx и Wzy характеризуют скорость изменения gz (то есть ее градиент) по горизонтали (в плоскости XOY, касательной к поверхности) и имеют размерность . Их называют горизонтальными градиентами силы тяжести, в отличие от вертикального Wzz = = = dg /dz. Именно горизонтальные градиенты имеют геологический смысл, поскольку над относительно небольшими телами, зачастую почти не проявляющими себя в поле Δgа , наблюдаются аномалии Wzx и Wzy. Вертикальный градиент позволяет оценить, как меняется сила тяжести с изменением высоты точки наблюдения относительно уровня моря, то есть поверхности сфероида (геоида). Из всех градиентов вертикальный имеет наибольшую величину, которая составляет примерно 3·10-6 1/с2. За единицу измерения градиентов силы тяжести принимается этвеш (Е). Один Е соответствует изменению силы тяжести на 0,1 мГал на участке в 1 км. Таким образом 1 Е=1·10-91/сек2. Название этвеш связано с именем венгерского физика Этвеша, который изобрел специальный прибор для измерения градиентов – гравитационный вариометр, действующий по принципу крутильных весов Кулона. В наше время вариометрические съемки проводятся сравнительно редко, в основном в рудной геофизике
|
|||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 510; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.232.71 (0.01 с.) |