Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

На аноде, в первую очередь, должны окисляться наиболее сильные восстановители – вещества, имеющие наиболее отрицательное значение электродных (окислительно – восстановительных) потенциалов.

Поиск

В зависимости от условий электролиза, на аноде принципиально возможны следующие окислительные процессы:

– окисление анионов кислотных остатков, например

2Сl- 2e = Cl2 процесс 1

– окисление анионов гидроксила

4ОН- – 4e = 2O2 + 2H2O процесс 2

– окисление молекул воды

2H2О – 4e = O2 + 4H+ процесс 3

– окисление материала анода

Me0n e = Me+ n процесс 4.

На катоде, в первую очередь, восстанавливаются наиболее сильные окислители, имеющие наибольшие положительные значения электродных (окислительно-восстановительных) потенциалов.

При этом на катоде, в зависимости от условий, принципиально возможны следующие восстановительные процессы:

– восстановление катионов металла

Me+ n + n e = Me0 процесс 5

– восстановление ионов водорода

2H+ + 2e = Н2 процесс 6

– восстановление молекул воды

2H2O + 2e = Н2 + 2ОН процесс 7.

Различают электролиз, протекающий с участием активных и инертных электродов.

Электрод (анод), материал которого может окисляться в процессе электролиза, называется активным (растворимым) электродом.

Примером активных электродов могут служить медный электрод, используемый при электролизе водного раствора сульфата меди, цинковый, серебряный и другие электроды. В результате процесса электролиза материал электрода растворяется.

Не окисляющийся в процессе электролиза и служащий только для подвода электрического тока электрод называется инертным.

Инертные электроды изготавливают из графита, угля, золота, платиновых металлов, нержавеющей стали и некоторых других материалов.

Рассматривая процессы восстановления катионов на катоде при электролизе, следует иметь в виду следующие аспекты.

При восстановлении катионов на катоде и их переводе в нейтральные атомы требуется различное напряжение электрического тока. Одни ионы легче теряют свои заряды, другие труднее. Степень легкости, с которой разряжаются (присоединяют электроны) ионы металлов, определяется положением металлов в ряду стандартных электродных потенциалов. Чем левее стоит металл в этом ряду и чем меньше величина его электродного потенциала, тем труднее, при прочих равных условиях, разряжаются его ионы.

Процессы восстановления на катоде.

· Не зависят от материала катода, а зависят от положения металла в ряду стандартных электродных потенциалов.

· В первую очередь восстанавливаются катионы малоактивных металлов, расположенных в ряду стандартных электродных потенциалов после водорода Н2, (например, Au3+, Ag+, Hg2+, Cu2+)

Me+ n + n e = Me0 процесс 5.

· Катионы металлов средней активности, стоящие в ряду стандартных электродных потенциалов между Аl и Н2, восстанавливаются совместно с катионами водорода (из молекул Н2О). При этом на катоде одновременно протекают два процесса:

а) процесс восстановления ионов металла средней активности:

Me+ n + n e = Me0 процесс 5

б) процесс восстановления ионов водорода из воды:

2H2О + 2e = Н2 + 2ОН процесс 7.

· Катионы активных металлов от Li до А1 (включительно) при электролизе водных растворов не восстанавливаются. На катоде в этом случае восстанавливаются только ионы водорода из воды и выделяется водород:

2H2О + 2e = Н2 + 2ОН процесс 7.

· При электролизе растворов сильных кислот, характеризующихся высокими концентрациями ионов водорода, на катоде восстанавливаются ионы водорода Н+:

2H+ + 2e = Н20 процесс 6.

 

Процессы окисления на аноде

 

· Зависят от материала анода.

· Если анод нерастворимый (инертный), то в первую очередь на нем окисляются анионы бескислородных кислот (за исключением ионо фтора F)

2Сl – 2e = Cl2 процесс 1.

· Анионы кислородсодержащих кислот (оксокислот), например, SO42–, NO3, СО32–, РO43–, а также фторид ион (F), не окисляются при электролизе водных растворов. При этом на аноде идет процесс окисления молекул Н2О:

2H2О – 4e = O2 + 4H+ процесс 3.

· При электролизе растворов щелочей на аноде окисляются ионы ОН и, в результате, выделяется кислород:

4ОН – 4e = 2O2 + 2H2O процесс 2.

· При наличии в растворе различных анионов, они окисляются в порядке возрастания величины их окислительно-восстановительного потенциала:

- сначала окисляются анионы бескислородных кислот;

- затем окисляются молекулы Н2О (в щелочной среде – ионы ОН);

- анионы кислородсодержащих кислот (оксокислот) и ионы фтора F­остаются в растворе без изменения.

· Если проводится электролиз с активным электродом (растворимым анодом), то на нем протекает процесс окисления материала анода:

Me0n e = Me+ n

при осуществлении процесса электролиза с растворимыми электродами имеет место перенос материала электрода (в нашем случае меди) с анода на катод.

Электролиз - это ещё один способ получения чистых металлов и неметаллов. Кроме того, электролиз можно провести и в домашних условиях. Нужен источник тока, два электрода (какие электроды бывают и какой в каком случае брать - рассказано дальше) и, конечно, электролит. Электролит - это раствор, который проводит электрический ток.

Различают электролиз растворов и электролиз расплавов. Оба эти процесса существенно отличаются друг от друга. Отличие - в наличии растворителя. При электролизе растворов кроме ионов самого вещества в процессе участвуют ионы растворителя. При электролизе расплавов - только ионы самого вещества.

Для того, чтобы получить нужный продукт (газ, металл или неметалл), нужно правильно выбрать электрод и раствор электролита. Электродами могут служить любые материалы, проводящие электрический ток. В основном применяют металлы и сплавы, из неметаллов электродами могут служить, например, графитовые стержни (или углерод). Реже в качестве электрода используют жидкости.
Электрод, заряженный положительно - анод. Электрод, заряженный отрицательно - катод. При электролизе происходит окисление анода (он растворяется) и восстановление катода. Именно поэтому анод следует брать таким, чтобы его растворение не повлияло на химический процесс, протекающий в растворе или расплаве. Такой анод называют инертным электродом. В качестве инертного анода можно взять графит (углерод) или платину.
В качестве катода можно взять металлическую пластину (она не будет растворяться). Подойдёт медь, латунь, углерод (или графит), цинк, железо, алюминий, нержавейка.

В домашних условиях, из тех веществ, что имеются практически у каждого, можно без труда получить, например, кислород, водород, хлор, медь, серу, а также слабую кислоту или щёлочь! Но будьте осторожны с хлором - этот газ ядовит!

 

Электролиз расплавов

При электролизе расплавов в процессе участвуют только ионы вещества, которое подвергается электролизу. Например, если подвергнуть электролизу расплав поваренной соли (NaCl), то на аноде будет выделяться тот же газ - хлор, а вот на катоде вместо водорода будет восстанавливаться чистый металл - натрий (Na). Именно таком способом в промышленности получают металлический натрий и другие щелочные и щелочноземельные металлы. Таким же образом получают другие щелочные металлы (калий (K), литий (Li), кальций (Ca)), проводя ток через расплавы их солей.

· Первый закон электролиза Фарадея: масса вещества, осаждённого на электроде при электролизе, прямо пропорциональна количеству электричества, переданного на этот электрод. Под количеством электричества имеется в виду электрический заряд, измеряемый, как правило, в кулонах.

· Второй закон электролиза Фарадея: для данного количества электричества (электрического заряда) масса химического элемента, осаждённого на электроде, прямо пропорциональна эквивалентной массе элемента. Эквивалентной массой вещества является его молярная масса, делённая на целое число, зависящее от химической реакции, в которой участвует вещество.

Законы Фарадея можно записать в виде следующей формулы:

где:

· m — масса осаждённого на электроде вещества,

· Q — полный электрический заряд, прошедший через вещество

· F = 96 485,33(83) Кл·моль−1 — постоянная Фарадея,

· M — молярная масса вещества (Например, молярная масса воды H2O = 18 г/моль),

· z — валентное число ионов вещества (число электронов на один ион).

Заметим, что M/z — это эквивалентная масса осаждённого вещества.

Для первого закона Фарадея M, F и z являются константами, так что чем больше величина Q, тем больше будет величина m.

Для второго закона Фарадея Q, F и z являются константами, так что чем больше величина M/z (эквивалентная масса), тем больше будет величина m.

В простейшем случае постоянного тока электролиза приводит к:

и тогда

где:

· n — выделенное количество вещества («количество молей»): n = m/M,

· t — время действия постоянного тока.

Аккумулятор – многоразовый источник тока химического действия, в основу которого положен принцип обратимости химических процессов (окислительно-восстановительная реакция), что обеспечивает многократное его использование. Аккумулятор используется для накопления энергии и дальнейшего его использования как автономный источник энергии в различных электротехнических устройствах.

Аккумуляторная батарея – это несколько аккумуляторов, соединённых в одну электрическую цепь.

Устройство аккумулятора

Принцип действия аккумулятора, как уже было сказано ранее, исходит из обратимости химических процессов, то есть при полностью разряженном аккумуляторе, мы можем восстановить его работоспособность путём заряда, пропуская электрический ток в направлении, обратном направлению при разряде.

Ёмкость аккумулятора – это величина заряда, который отдается полностью заряженным аккумулятором при разряде до момента наступления наименьшего допустимого напряжения, другими словами это максимальный полезный заряд аккумулятора. Ёмкость аккумулятора на практике чаще всего измеряют в так называемой единице «ампер час», в системе СИ ёмкость измеряют в кулонах, и соответственно 1 ампер-час = 3600 Кл соответственно. Иногда еще используется такое понятие как – энергия, которую аккумулятор отдает с полностью заряженного аккумулятора при разряде до наименьшего допустимого напряжения, в системе СИ она измеряется в джоулях, на практике «ватт час», 1 Вт*ч = 3600 Дж.

Характеристики аккумуляторных батарей

Характеристики аккумулятора в первую очередь зависят от металла из которого сделаны электроды и состава электролета.

Наиболее распространёнными сейчас являются:

1. Свинцово-кислотный (Lead Acid) – самый распространённый тип аккумуляторной батареи, который используется в автомобилях, или же как источники бесперебойного питания в аварийных случаях.

2. Никель-кадмиевые (NiCd) – наибольшее распространение получили как замена стандартного гальванического элемента, так же применяются в электрокарах, трамваях и троллейбусах для осуществления питания цепей управления.

3. Никель-металлогидридные (NiMH) – так же используются как замена стандартного гальванического элемента, в электромобилях, радиоаппаратуре, осветительной технике.

4. Литий-ионные (Li-ion) – нашел применение в современных бытовых и строительных приборах, а так же в мобильных устройствах.

5. Литий-полимерные (Li-pol) – используется в мобильных устройствах и цифровой технике

6. Никель-цинковые (NiZn) – используется как стандартный гальванический элемент

 

Свинцовые аккумуляторы (Pb). Реагентами в свинцовых аккумуляторах служат диоксид свинца (PbO2) и свинец (Pb), электролитом - раствор серной кислоты. Они также называются свинцово-кислотными аккумуляторами. Их разделяют на четыре основные группы; стартерные, стационарные, тяговые и портативные (герметизированные). Наиболее распространенные из свинцовых аккумуляторов - стартерные аккумуляторы, предназначены для запуска двигателей внутреннего сгорания и энергообеспечения устройств машин. В последние годы в основном используются аккумуляторы, не требующие ухода. К недостаткам относят невысокие удельную энергию и наработку, плохую сохранность заряда, выделение водорода.

Стационарные аккумуляторы используются в энергетике, на телефонных станциях, в телекоммуникационных системах, в качестве аварийного источника тока и т.д. Обычно они работают в режиме непрерывного подзаряда. Относятся к недорогим аккумуляторам.

Тяговые аккумуляторы предназначены для электроснабжения электрокаров, подъемников, шахтных электровозов, электромобилей и других машин. Действуют в режимах глубокого разряда, имеют большой ресурс и низкую стоимость.

Портативные (герметизированные) свинцовые аккумуляторы используются для питания приборов, инструмента, аварийного освещения. К их достоинствам относятся более низкая стоимость по сравнению со стоимостью других портативных аккумулторов, широкий интервал рабочих температур. Недостатками кислотных аккумуляторов являются невозможность хранения в разряженном состоянии, трудность изготовления аккумуляторов малых размеров.Свинцово-Кислотные Аккумуляторы

Неметаллы – это химические элементы, для атомов которых характерна способность, принимать электроны до завершения внешнего слоя благодаря наличию, как правило, на внешнем электронном слое 4-х и более электронов и малому радиусу атомов по сравнению с атомами металлов.
Все элементы-неметаллы (кроме водорода) занимают в периодической системе химических элементов Д. И. Менделеева верхний правый угол, образуя треугольник, вершиной которого является фтор F, а основанием диагонали B-At.
Для неметаллов характерны высокие значения электроотрицательности, она изменяется в пределах от 2 до 4. неметаллы – это элементы главных подгрупп, преимущественно p-элементы, исключение составляет водород – s-элемент.
У атомов неметаллов преобладают окислительные свойства, то есть способность присоединять электроны.
В соответствии с численными значениями относительных электроотрицательностей окислительные способности неметаллов увеличиваются в следующем порядке:

Все неметаллы, кроме фтора, проявляют восстановительные свойства (способность отдавать электроны). Причем эти свойства постепенно возрастают от кислорода к кремнию:

Физические свойства:

Простые вещества, образованные атомами неметаллов, построены с помощью ковалентных неполярных связей.
Два типа строения простых веществ неметаллов:
Молекулярное строение. При обычных условиях большинство таких веществ представляют собой газы (H2, N2, O2, F2, Cl2, O3) или твердые вещества (I2, P4, S8) и лишь бром (Br2) является жидкостью. Все эти вещества летучи, в твердом состоянии они легкоплавки, и способны к возгонке.
Атомное строение. Вещества образованы длинными цепями атомов (Cn, Bn, Sin, Sen, Ten) – имеют высокую твердость, высокие температуры кипения и плавления.
Многие элементы-неметаллы образуют несколько простых веществ – аллотропных модификаций.
Все газообразные вещества, жидкий бром, а также типичные ковалентные кристаллы представляют собой диэлектрики. Кристаллы непластичны, а любая деформация вызывает разрушение ковалентных связей. Большинство неметаллов не имеют металлического блеска.

Химические свойства.



Поделиться:


Последнее изменение этой страницы: 2016-06-07; просмотров: 1425; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.83.202 (0.008 с.)