Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Определение ускорения в полярных координатахСодержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
Пусть движение точки М в плоскости Оху задано в полярных координатах r= r(t); φ= φ(t). Декартовы координаты выражаются через полярные по формулам х= r∙соsφ, у= r∙sinφ. Найдем проекции ar и aφ ускорение a точки на радиальное (r) и трансверсальное (φ) направление (рис.10.1) Для ax и ay имеем выражение ax=arcosφ - aφsinφ, ay=arsinφ + aφcosφ C другой стороны, ax=x=rcosφ – 2rφsinφ – rcosφ ∙φ2 – rsinφ ∙φ, ay=y=rsinφ + 2rφcosφ - rsinφ ∙φ2 + rcosφ ∙φ.
Рис.10.1
Таким образом, получим ar=r – rφ2, aφ=2rφ + rφ. Модуль ускорения Обозначая через θ угол, образованный ускорением с положительным радиальным направлением, определим направление ускорения a точки по формуле
Определение ускорения при естественном способе задания движения. Касательное и нормальное ускорение точки При естественном способе задания движения вектор определяют по его проекциям на оси Mτnb, имеющие начало в точке М и движущиеся вместе с нею (рис.11). Эти оси, называемые осями естественного трехгранника (или скоростными (естественными) осями), направлены следующим образом: ось Mτ - вдоль касательной к траектории в сторону положительного отсчета расстояния s; ось Mn - по нормали, лежащей в соприкасающейся плоскости и направленной в сторону вогнутости траектории; ось Mb - перпендикулярно к первым двум так, чтобы она образовала с ними правую тройку. Нормаль Mn, лежащая в соприкасающейся плоскости(вплоскости самой кривой, если кривая плоская), называетсяглавной нормалью, а перпендикулярная к ней нормаль Mb - бинормалью. Естественные оси – это подвижные оси, связанные с движущейся точкой М и образующие правую прямоугольную систему координат. Плоскость, проходящая через обе нормали (главную нормаль n и бинормаль b), называется нормальной плоскостью. Координатная плоскость, проходящая через касательную нормаль n, называется соприкасающейся плоскостью. Соприкасающуюся плоскость в некоторой точке М кривой можно определить также, как предельное положение плоскости, проходящей через касательную в точке М и любую точку кривой М1, когда последняя стремится в пределе к совпадению с точкой М. При движении точки по траектории направления естественных осей непрерывно изменяются. Рис.11
Было показано, что ускорение точки лежит в соприкасающейся плоскости, т.е. в плоскости Mτn; следовательно, проекция вектора на бинормаль равна нулю (a=0). Вычислим проекции , на две другие оси. Пусть в моментвремени t точка находится в положении М и имеет скорость v, a в момент t1=t+∆t приходит в положение М 1 и имеет скорость v1. Тогда по определению Перейдем в этом равенстве от векторов к их проекциям на оси Mτ и Mn, проведенные в точке М (рис.11). Тогда на основании теоремы о проекции суммы (или разности) векторов на ось получим: Учитывая, что проекция вектора на параллельные оси одинаковы, проведем через точку М 1 оси , параллельные Mτ, Mn, и обозначим угол между направлением вектора и касательной Mτчерез ∆φ. Этот угол между касательными к кривой в точках М и М 1 называется углом смежности. Напомним, что предел отношения угла смежности ∆φ к длине дуги MM1=∆s определяет кривизну k кривой в точке М. Кривизна же является величиной, обратной радиусу кривизны ρ в точке М. Таким образом, Обращаясь теперь к чертежу (рис.11), находим, что проекции векторов и на оси Mτ, Mn, будут равны: где v и v1 - численные величины скорости точки в моменты t и t1. Следовательно, Заметим что при ∆t→0 точка М1 неограниченно приближается к М и одновременно Тогда, учитывая, что в пределе , получим для aτ выражение Правую часть выражения an преобразуем так, чтобы в нее вошли отношения, пределы которых нам известны. Для этого умножим числитель и знаменатель дроби, стоящей под знаком предела, на ∆φ∆s. Тогда будем иметь так как пределы каждого из стоящих в скобке сомножителей при ∆t→0 равны: Окончательно получаем: Итак, мы доказали, что проекция ускорения точки на касательную равна первой производной от численной величины скорости или второй производной от расстояния (криволинейной координаты) s noвремени, а проекция ускорения на главную нормаль равна квадрату скорости деленному на радиус кривизны траектории в данной точке кривой; проекция ускорения на бинормаль равна нулю (ab=0). Эти результаты выражают собою одну из важных теорем кинематики точки. Рис.12
Отложим вдоль касательной Mτ и главной нормали Mn векторы и , численно равные aτ и an (рис. 12). Эти векторы изображают касательную и нормальную составляющие ускорения точки. При этом составляющая будет всегда направлена в сторону вогнутости кривой (величина a всегда положительна), а составляющая может быть направлена или в положительном, или в отрицательном направлении оси Mτ в зависимости от знака проекции aτ (см. рис.12, а и б). Вектор ускорения точки изображается диагональю параллелограмма, построенного на составляющих и . Так как эти составляющие взаимно перпендикулярны, то по модулю:
|
||||
Последнее изменение этой страницы: 2016-04-25; просмотров: 979; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.242.160 (0.008 с.) |