Основні перетворення при застосуванні методу множників Лагранжа. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основні перетворення при застосуванні методу множників Лагранжа.



* Приклад. Нехай треба знайти точки екстремуму функції f °(x)= x на множині x=[(x,y)? E2:x3-y2=0]

Застосуємо метод множників Лагранжа. Будуємо функцію Лагранжа задачі L(x, y, λ0, λ1)=λ0x+λ1(x3-y2) та записуємо необхідні умови екстремуму:

Якщо припустити, що λ0>0, то з першого рівняння будемо мати λ0=-3λ1x2, де λ1<0. х>0.

Тоді з рівняння х 3-у 2= 0 випливає, що у=0.

Отже, λ1<0, у≠0 і система не буде сумісною, оскільки не задовольняється рівняння -2λ1у=0. Виходить, що система сумісна лише при λ0=0. Тоді λ1=1і розв'язком системи відносно х і убуде точка (0,0).

Таким чином, задача є виродженою в точці (0,0), яка є підозрілою на екстремум.

Виразивши х через у із обмеження х 3-у 2= 0, отримаємо f 0 (x)= x = у 2/3 при Ясно, що (0,0) є точкою глобального мінімуму функції f 0 (x) на множині X.

**Метод множників Лагранжа. Ідея методу множників Лагранжа полягає в заміні початкової задачі простішою. Для цього цільову функцію замінюють іншою, з більшою кількістю змінних, тобто такою, яка включає в себе умови, що подані як обмеження. Після такого перетворення дальше розв’язування задачі полягає в знаходженні екстремуму нової функції, на змінні якої не накладено ніяких обмежень. Тобто від початкової задачі пошуку умовного екстремуму переходимо до задачі відшукання безумовного екстремального значення іншої функції. Отже, завдяки такому перетворенню можливе застосування методів класичного знаходження екстремуму функції кількох змінних.

Узагальнення необхідної умови існування локального екстремуму функції n змінних має аналогічний вигляд. Отже, для розв’язування задачі необхідно знайти вирази частинних похідних нової цільової функції за кожною змінною і прирівняти їх до нуля. В результаті отримаємо систему рівнянь. Її розв’язок визначає так звані стаціонарні точки, серед яких є і шукані екстремальні значення функції.

Розглянемо метод множників Лагранжа для розв’язування задачі нелінійного програмування, що має вигляд: (8.6)

за умов: , (8.7)

де функції і мають бути диференційовними.

Задача (8.6), (8.7) полягає в знаходженні екстремуму функції за умов виконання обмежень .

Переходимо до задачі пошуку безумовного екстремуму. В літературі [13, 28] теоретично доведено, що постановки та розв’язання таких задач еквівалентні.

Замінюємо цільову функцію (8.6) на складнішу. Ця функція називається функцією Лагранжа і має такий вигляд:

 

(8.8)

де — деякі невідомі величини, що називаються множниками Лагранжа.

Знайдемо частинні похідні і прирівняємо їх до нуля:

(8.9)

Друга група рівнянь системи (8.9) забезпечує виконання умов (8.7) початкової задачі нелінійного програмування.

Система (8.9), як правило, нелінійна.

Розв’язками її є і — стаціонарні точки. Оскільки, ці розв’язки отримані з необхідної умови екстремуму, то вони визначають максимум, мінімум задачі (8.6), (8.7) або можуть бути точками перегину (сідловими точками).

Для діагностування стаціонарних точок і визначення типу екст­ремуму необхідно перевірити виконання достатніх умов екстремуму, тобто дослідити в околі стаціонарних точок диференціали другого порядку (якщо для функцій існують другі частинні похідні і вони неперервні).

Узагальнення достатньої умови існування локального екстремуму для функції n змінних приводить до такого правила: за функ­цією Лагранжа виду (8.8) будується матриця Гессе, що має блочну структуру розмірністю :

де О — матриця розмірністю , що складається з нульових елементів,

Р — матриця розмірністю , елементи якої визначаються так:

,

— транспонована матриця до Р розмірністю ,

Q — матриця розмірністю виду:

, де .

Розглянемо ознаки виду екстремуму розв’язку системи (8.9). Нехай стаціонарна точка має координати і .

1. Точка є точкою максимуму, якщо, починаючи з голов­ного мінору порядку (m + 1), наступні (nm) головних мінорів матриці Н утворюють знакозмінний числовий ряд, знак першого члена якого визначається множником .

2. Точка є точкою мінімуму, якщо, починаючи з головного мінору порядку (m + 1), знак наступних (nm) головних мінорів матриці Н визначається множником .

Розглянемо задачу, розв’язок якої знайдемо методом множників Лагранжа.

**Для розв'язування задач нелінійного програмування не існує універсального методу, а тому доводиться застосовувати багато методів іобчислювальних алгоритмів, які ґрунтуються, здебільшого, на теорії диференціального числення, і вибір їх залежить від конкретної постановки задачі та форми економіко-математичної моделі.

Методи нелінійного програмування бувають прямі та непрямі. Прямими методами оптимальні розв'язки відшукують у напрямку найшвидшого збільшення (зменшення) цільової функції. Типовими для цієї групи методів є градієнти. Непрямі методи полягають у зведенні задачі до такої, знаходження оптимуму якої вдається спростити. До них належать, насамперед, найбільш розроблені методи квадратичного та сепарабельного програмування.

Оптимізаційні задачі, на змінні яких не накладаються обмеження, розв'язують методами класичної математики. Оптимізацією з обмеженнями-рівностями виконують методами зведеного градієнта, скажімо методом Якобі, та множників Лагранжа. У задачах оптимізації з обмеженнями-нерівностями досліджують необхідні та достатні умови існування екстремуму Куна—Таккера.

Розглянемо метод множників Лагранжа на прикладі такої задачі нелінійного програмування:

Z =f (х1, х2... хп) — > mах (min) за умов

q1(x1,x2,…xn)=bi,i=1, де функція f (х1, x2,..., хп) i q1(x1, x2, …xn) диференційовані.

Ідея методу множників Лагранжа полягає в заміні даної задачі простішою: на знаходження екстремуму складнішої функції, але без обмежень. Ця функція називається функцією Лагранжа і подається у вигляді

де λi— не визначені поки що величини, так звані множники Лагранжа.

Знайшовши частинні похідні функції L за всіма змінними і прирівнявши їх до нуля:

запишемо систему

що є, як правило, нелінійною.

Розв'язавши цю систему, знайдемо X* =(х1, x2,..., хп) i λ0= (λ1, λ 2,..., λm) — стаціонарні точки. Оскільки їх визначено з необхідної умови екстремуму, то в них можливий максимум або мінімум.



Поделиться:


Последнее изменение этой страницы: 2016-04-23; просмотров: 487; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.42.94 (0.01 с.)