Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Непрерывность функции. Классификация точек разрыва.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте Непрерывность функции. Классификация точек разрыва. Определение 1. Функция f(x) называется непрерывной в точке х0, если
Это означает, что функция f(x) удовлетворяет следующим условиям: 1) определена в точке х0 (т.е. существует f(x0)); 2) имеет конечный предел функции при х→х0; 3) этот предел равен значению функции в точке х0, т.е. Т.к.
Определение 2. Функция f(x) называется непрерывной в точке х0, если любому, сколь угодно малому, e>0 можно указать такое число δ>0 (зависящее от e, δ=δ(e)), что для всех хÎХ таких, что |x-x0|<δ выполняется неравенство |f(х)- f(x0)|<e.
(Здесь нет запрета х≠х0). Определение 3 (в терминах окрестности). Функция f(x) называется непрерывной в точке х0, если для любого сколь угодно малого числа e>0 найдется такое число δ=δ(Е), что для всех х, попадающих в d-окрестность точки х0, соответствующие значения функции попадают в e-окрестность величины f(x0) (здесь окрестность не выколотая):
Определение 4 (в терминах последовательности). Функция f(x) называется непрерывной в точке х0, если для любой последовательности {xn}, сходящейся к х0, последовательность {f(xn)} соответствующих значений функции сходится к f(x0). (Здесь нет запрета xn≠x0). Пример. а) у= б) у= в) у= г) у=х2 – непрерывная функция в точке х=0, т.к. выполнены все 3 условия непрерывности.
1) f(x)=sign x, f(x)= Не существует Замечание. Пусть х0ÎХ и хÎХ и пусть х=х0+∆х, следовательно ∆х=х-х0. Величина ∆х называется приращением аргумента (∆х может быть как положительной, так и отрицательной). Пусть у0=f(x0), y=f(x)=f(x0+∆x). Величина ∆y=f(x)-f(x0)=f(x0+∆x)-f(x0) называется приращением функции f(x) в точке х0, соответствующим приращению аргумента Dх (∆у может быть как положительной, так и отрицательной). Предположим, что функция f(x) – непрерывна в точке х0. Это означает, что
Следовательно, можно сказать, что Теорема. Функция у=f(x) будет непрерывной в точке х0 тогда и только тогда, когда бесконечно малому приращению аргумента Dх соответствует бесконечно малое приращение функции Dу, т.е. Эта теорема дает эквивалентное определение непрерывности. Аналогично определению правостороннего и левостороннего пределов функции f(x), можно определить правостороннюю и левостороннюю непрерывность функции f(x) в точке х0. Определение. Функция f(x) называется непрерывной справа в точке х0, если
Функция f(x) называется непрерывной слева в точке х0, если Утверждения. 1) Если функция f(x) непрерывна в точке х0 в обычном смысле, то она непрерывна в этой точке одновременно и справа, и слева. 2) Если функция f(x) непрерывна в точке х0 одновременно и справа, и слева, то она непрерывна в этой точке и в обычном смысле. Определение. Функция f(x) непрерывна на множестве Х, если она непрерывна в каждой точке этого множества. Определение. Пусть функция f(x) определена на отрезке [a,b]. Функция f(x) непрерывна на [a,b], если она непрерывна в обычном смысле в каждой внутренней точке этого промежутка и если она непрерывна справа в точке а и непрерывна слева в точке b. Свойства непрерывных функций. Примеры непрерывных функций. 1) f(x)ºС, хÎ(-¥;+¥) – непрерывна в любой точке х0Î(-¥;+¥). Действительно, пусть точка х0 – любая из (-¥;+¥). Возьмем произвольную последовательность {xn} такую, что xn→x0, n→¥. Соответствующая последовательность значений функции будет такой: f(x1)=С, f(x2)=С, …, f(xn)=С, …. f(xn)→С=f(x0), при n→¥. А это означает, что функция f(x) непрерывна в точке х0. Т.к. точка х0 – любая точка из промежутка (-¥;+¥). Следовательно, f(x) непрерывна в промежутке (-¥;+¥). Или DС=С-С=0. 2) f(x)=x, xÎ(-¥;+¥) Выберем произвольную точку х0Î(-¥;+¥). Возьмем произвольную последовательность {xn} такую, что xn→x0, n→¥. Соответствующая последовательность значений функции будет такой: f(x1)=x1, f(x2)=x2, …, f(xn)=xn, …. f(xn)→x0=f(x0), при n→¥. А это означает, что функция f(x) непрерывна в точке х0. Т.к. точка х0 – любая точка из промежутка (-¥;+¥). Следовательно, f(x)=х непрерывна в промежутке (-¥;+¥). 3) f(x)=xn, xÎ(-¥;+¥), nÎN Эта функция непрерывна в промежутке (-¥;+¥), т.к. f(x)=х∙х∙…∙х. Следовательно, f(x)=xn непрерывна в промежутке (-¥;+¥) как произведение конечного числа функций, непрерывных в этом промежутке. 4) f(x)=a0xn+a1xn-1+a2xn-2+…+an-1x+an, xÎ(-¥;+¥), nÎN – целая рациональная функция, полином – непрерывна в промежутке (-¥;+¥) как сумма конечного числа функций, непрерывных в этом промежутке. 5) 6) Покажем, что функция f(x)=sin x непрерывна на всей своей области определения, т.е. на R=(-¥;+¥). Возьмем х0. Рассмотрим |sin x - sin x0|=2 (т.к. |sin x| <|x-x0|)Т.о. |sin x - sin x0|£|x-x0| Возьмем δ=e, тогда 7) Аналогично доказывается непрерывность функции f(x)=cos x. 8) 9) Аналогично Все основные элементарные функции непрерывны на своей области определения. Теорема 3. Пусть функция f(x) непрерывна в точке х0ÎХ. Тогда существует окрестность V(x0) точки х0, на которой функция ограничена. Т.е.
Доказательство. Т.к. f(x) непрерывна в точке х0, то
Возьмем e=1 и оценим êf(x)ê=êf(x)-f(x0)+f(x0)ê£êf(x)-f(x0)ê+ êf(x0)ê<1+êf(x0)ê Т.о. êf(x)ê<1+êf(x0)ê, т.е. f(x) – ограничена. Ч.т.д. Теорема 4. Пусть функция f(x) непрерывна в точке х0ÎХ и f(x0)≠0. Тогда существует окрестность V(x0) точки х0, на которой
Причем, если f(x0)>0, если f(x0)<0, График. f(x)= В точке х1=-Π разрыв 1-го рода и непрерывна слева. Скачок функции в точке х1 равен -Π. В точке х2=Π/2 – точка устранимого разрыва (f(Π/2) – неопределенно). Три важных предела. 1. Покажем, что
2. Покажем, что Положим ах-1=уÞах=1+уÞх Имеем
Следовательно, 3. Покажем, что Положим (1+х)a-1=уÞ(1+х)a=1+уÞa Имеем
Теорема (б.д.). Пустьфункция у=f(x) определена и непрерывна на отрезке [a,b] и является на нем строго возрастающей. Тогда у функции у=f(x) есть обратная функция х=g(y), определенная на отрезке [p,q], где p=f(a), q=f(b), причем эта функция строго возрастающая и непрерывная в промежутке [p,q]. Замечание 1. Аналогичная теорема имеет место для строго убывающих функций: Пустьфункция у=f(x) определена и непрерывна на отрезке [a,b] и является на нем строго убывающей. Тогда у функции у=f(x) есть обратная функция х=g(y), определенная на отрезке [p,q], где p=f(b), q=f(а), причем эта функция строго убывающая и непрерывная в промежутке [p,q]. Замечание 2. Справедливы также следующие утверждения. Утверждение 1. Пустьфункция у=f(x) определена и непрерывна в промежутке (a,b) и является на нем строго возрастающей. Тогда у функции у=f(x) есть обратная функция х=g(y), определенная в промежутке (p,q), где p= Утверждение 2. Пустьфункция у=f(x) определена и непрерывна в промежутке (a,b) и является на нем строго убывающей. Тогда у функции у=f(x) есть обратная функция х=g(y), определенная в промежутке (p,q), где p= Замечание 3. Некоторые из чисел a,b,p,q могут быть несобственными. Непрерывность функции. Классификация точек разрыва. Определение 1. Функция f(x) называется непрерывной в точке х0, если
Это означает, что функция f(x) удовлетворяет следующим условиям: 1) определена в точке х0 (т.е. существует f(x0)); 2) имеет конечный предел функции при х→х0; 3) этот предел равен значению функции в точке х0, т.е. Т.к.
Определение 2. Функция f(x) называется непрерывной в точке х0, если любому, сколь угодно малому, e>0 можно указать такое число δ>0 (зависящее от e, δ=δ(e)), что для всех хÎХ таких, что |x-x0|<δ выполняется неравенство |f(х)- f(x0)|<e.
(Здесь нет запрета х≠х0). Определение 3 (в терминах окрестности). Функция f(x) называется непрерывной в точке х0, если для любого сколь угодно малого числа e>0 найдется такое число δ=δ(Е), что для всех х, попадающих в d-окрестность точки х0, соответствующие значения функции попадают в e-окрестность величины f(x0) (здесь окрестность не выколотая):
Определение 4 (в терминах последовательности). Функция f(x) называется непрерывной в точке х0, если для любой последовательности {xn}, сходящейся к х0, последовательность {f(xn)} соответствующих значений функции сходится к f(x0). (Здесь нет запрета xn≠x0). Пример. а) у= б) у= в) у= г) у=х2 – непрерывная функция в точке х=0, т.к. выполнены все 3 условия непрерывности.
1) f(x)=sign x, f(x)= Не существует Замечание. Пусть х0ÎХ и хÎХ и пусть х=х0+∆х, следовательно ∆х=х-х0. Величина ∆х называется приращением аргумента (∆х может быть как положительной, так и отрицательной). Пусть у0=f(x0), y=f(x)=f(x0+∆x). Величина ∆y=f(x)-f(x0)=f(x0+∆x)-f(x0) называется приращением функции f(x) в точке х0, соответствующим приращению аргумента Dх (∆у может быть как положительной, так и отрицательной). Предположим, что функция f(x) – непрерывна в точке х0. Это означает, что
Следовательно, можно сказать, что Теорема. Функция у=f(x) будет непрерывной в точке х0 тогда и только тогда, когда бесконечно малому приращению аргумента Dх соответствует бесконечно малое приращение функции Dу, т.е. Эта теорема дает эквивалентное определение непрерывности. Аналогично определению правостороннего и левостороннего пределов функции f(x), можно определить правостороннюю и левостороннюю непрерывность функции f(x) в точке х0. Определение. Функция f(x) называется непрерывной справа в точке х0, если
Функция f(x) называется непрерывной слева в точке х0, если Утверждения. 1) Если функция f(x) непрерывна в точке х0 в обычном смысле, то она непрерывна в этой точке одновременно и справа, и слева. 2) Если функция f(x) непрерывна в точке х0 одновременно и справа, и слева, то она непрерывна в этой точке и в обычном смысле. Определение. Функция f(x) непрерывна на множестве Х, если она непрерывна в каждой точке этого множества. Определение. Пусть функция f(x) определена на отрезке [a,b]. Функция f(x) непрерывна на [a,b], если она непрерывна в обычном смысле в каждой внутренней точке этого промежутка и если она непрерывна справа в точке а и непрерывна слева в точке b.
|
||||||||
|
Последнее изменение этой страницы: 2016-04-23; просмотров: 886; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.156 (0.01 с.) |