Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Характеристики выборочной совокупности и их распространение на генеральную совокупность.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
При использовании выборочного метода в социально-экономических исследованиях обычно применяют два основных вида обобщающих показателей: относительную величину альтернативного признака и среднюю величину количественного признака. Относительная величина альтернативного признака характеризует долю (удельный вес) единиц в статистической совокупности, которые отличаются от всех других единиц этой совокупности только наличием (отсутствием) изучаемого признака. Например, доля нестандартных изделий во всей партии товара, удельный вес продавцов в общей численности работников магазина и т.п. Средняя величина количественного признака – это обобщающая характеристика варьирующего признака, который имеет различные значения у отдельных единиц статистической совокупности. Например, средний вес изделия, средняя выработка одного продавца и т.д. В генеральной совокупности доля единиц, обладающих изучаемым признаком, называется генеральной долей (обозначается Р), а средняя величина варьирующего признака – генеральной средней (обозначается ). В выборочной совокупности долю изучаемого признака называют выборочной долей w, а среднюю величину в выборке – выборочной средней .
Выборочная доля определяется из отношения единиц, обладающих изучаемым признаком, m к общей численности единиц выборочной совокупности n: Основная задача выборочного исследования – на основе характеристик выборочной совокупности w и получить достоверные суждения о показателях доли P и средней в генеральной совокупности. Возможные расхождения между характеристиками выборочной и генеральной совокупностей измеряются средней ошибкой выборки μ. В математической статистике доказывается, что значения μ определяются по формуле , где - генеральная дисперсия. Но при проведении выборочных обследований она, как правило, неизвестна. На практике для определения μ обычно используется дисперсия выборочной совокупности σ 2 . При этом для показателя доли альтернативного признака дисперсия определяется по формуле дисперсии альтернативного признака, т.е. σw 2 = w(1-w) Следует иметь в виду, что приведенная выше формула расчета средней ошибки выборки μ применяется лишь при повторном отборе, когда каждая попавшая в выборку единица после фиксации значения изучаемого признака должна быть возвращена в генеральную совокупность, где ей опять представляется возможность попасть в выборку. Но на практике выборочные обследования проводятся обычно по схеме бесповторного отбора, при котором повторное попадание в выборку одних и тех же единиц исключено. Поскольку при бесповторном отборе численность генеральной совокупности N в ходе выборки сокращается, то в формулу расчета μ включают дополнительный множитель . Формула средней ошибки выборки принимает следующий вид: - общий вид: - для выборочной доли - для выборочной средней Значения средней ошибки выборки для выборочной доли и выборочной средней необходимы для установления возможных значений генеральной доли P и генеральной средней . Пределы значений этих показателей определяются по формулам: P= w = В математической статистике доказывается, что пределы значений характеристик генеральной совокупности P и отличаются от характеристик выборочной совокупности w и на величину с вероятностью 0,683. Т.е. в 683 случаях из тысячи генеральные характеристики будут находиться в установленных пределах, в остальных 317 случаях они могут выйти за эти пределы. Вероятность суждения можно повысить, если расширить пределы отклонений, увеличив среднюю ошибку выборки в t раз. Таким образом, показатели генеральной совокупности по показателям выборки определяются по формулам: P= w = Величина называется предельной ошибкой выборки Δ. Т.е. Δ w = Δ x = Множитель t называется коэффициентом доверия и определяется в зависимости от того, с какой вероятностью надо гарантировать результаты выборочного обследования. Конкретные значения коэффициента доверия t для различных степеней вероятности определяются с помощью функции А.М.Ляпунова. На практике пользуются готовыми таблицами этой функции:
|
||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 583; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.137.175 (0.008 с.) |