Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Периферическая часть слуховой системыСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
В наружном, среднем и внутреннем ухе происходят необходимые для слухового восприятия подготовительные процессы, смысл которых состоит в оптимизации параметров передаваемых звуковых колебаний при одновременном сохранении характера сигналов. Во внутреннем ухе происходит преобразование энергии звуковых волн в рецепторные потенциалы волос-ковых клеток. 17.4.2.1. Функция наружного уха Движения ушных раковин млекопитающих в направлении источника звука помогают обнаружить его пространственное расположение, эта функция определяется как ототопика. Большинство людей не могут изменять положение ушных раковин, а сохранность такой способности у человека квалифицируется как атавизм. Функцию ототопики у человека выполняют рельеф ушных раковин и их расположение на противоположных сторонах головы, позволяющее различать поступление звука спереди или сзади. Наружный слуховой проход ведет к барабанной перепонке, представляющей вогнутую в полость среднего уха перегородку, которая приводится в колебания распространяющимися звуковыми волнами. Ориентация коллагеновых волокон барабанной перепонки позволяет ей колебаться с частотой действующих звуковых волн относительно оси, расположенной вблизи ее верхнего края. 17.4.2.2. Функция среднего уха Воздушная полость среднего уха соединяется евстахиевой трубой с носоглоткой, что позволяет выравнивать давление в среднем ухе по атмосферному давлению (соприкасающиеся стенки евстахиевой трубы раскрываются при глотательных движениях). В полости среднего уха имеются три подвижно сочлененные слуховые косточки {молоточек, наковальня и стремечко), служащие для передачи колебаний от барабанной перепонки к овальному окну, которое ведет в вестибулярную часть внутреннего уха. Рукоятка молоточка прикреплена к барабанной перепонке, а основание стремечка закрывает овальное окно, подвижную связь между ними обеспечивает наковальня (рис. 17.13). Колебания барабанной перепонки сообщаются молоточку, рукоятка ко- 17. Сенсорные системы • 737
Слуховой нерв Полукружные каналы Рис. 17.13. Среднее и внутреннее ухо. А. Строение среднего и внутреннего уха: колебания барабанной перепонки сообщаются слуховым косточкам, которые передают их во внутреннее ухо через овальное окно. Б. Улитка показана в развернутом виде: колебания перилимфы вестибулярной лестницы сообщаются через геликотрему перилимфе барабанной лестницы, заставляя колебаться основную мембрану. В. Поперечный разрез кортиева органа: 1) вестибулярная лестница; 2) барабанная лестница; 3) средняя лестница (перепончатый канал улитки); 4) вестибулярная мембрана; 5) основная мембрана; 6) покровная пластинка; 7) волосковые клетки; 8) первичные сенсорные нейроны. торого в полтора раза длиннее отростка наковальни; благодаря этому создается рычаг, повышающий силу колебаний стремечка. Увеличение силы колебаний необходимо для их передачи из воздушной среды среднего уха в заполненную жидкостью полость внутреннего уха. Решению этой задачи способствует и большая площадь барабанной перепонки по сравнению с площадью овального окна, соотносящихся между собой как 20:1. При высоких значениях звукового давления амплитуда колебаний слуховых косточек уменьшается вследствие рефлекторного сокращения двух мышц, прикрепленных к рукоятке молоточка и стремечку. При сокращении одной из них (m. tensor tympani) увеличивается натяжение барабанной перепонки, что ведет к уменьшению амплитуды ее колебаний, а сокращение другой мышцы (m.stapedius) ограничивает колебания стремечка. Эти мышцы участвуют в приспособлении слуховой системы к звукам высокой интенсивности и начинают сокращаться примерно через 10 мс после начала действия звука, превышающего 40 дБ. 24 - 6095 738 • ФУНКЦИИ СИСТЕМ ЖИЗНЕОБЕСПЕЧЕНИЯ ОРГАНИЗМА 17.4.2.3. Внутреннее ухо В пирамиде височной кости имеется сложной формы полость (костный лабиринт), составными частями которой являются преддверие, улитка и полукружные каналы (см. рис. 17.13). Внутри костного лабиринта как в футляре размещен перепончатый лабиринт, по форме соответствующий костному. Полость трехслойного (эпителий, базальная мембрана, соединительная ткань) перепончатого лабиринта заполнена жидкостью (эндолимфа), а сам он взвешен в наружной жидкости (перилимфа), отличающейся по своему составу от внутренней. Слуховой частью лабиринта является улитка, которая представляет собой спираль из двух с половиной завитков, закрученных вокруг полого костного веретена. Внутри костного веретена расположены тела чувствительных нейронов, образующие спиральный ганглий. Периферические отростки нейронов спирального ганглия образуют синапсы со вторичными рецепторами улитки (волосковыми клетками), а центральные — составляют слуховой нерв. Перепончатый лабиринт улитки имеет трехгранную форму, его дно образовано основной, или базилярной, мембраной, крыша — вестибулярной, или рейснеровой, мембраной. Заполненная перилимфой полость под базилярной мембраной называется барабанной лестницей, а полость над вестибулярной мембраной — вестибулярной лестницей: обе полости сообщаются у вершины улитки посредством тонкого прохода — геликотремы. Собственная полость перепончатого лабиринта заполнена эндолимфой и называется средней лестницей. На базилярной мембране расположен кортиев орган, состоящий из нескольких рядов волосковых рецепторных клеток, поддерживаемых опорным эпителием. Около 3500 волосковых клеток образуют внутренний ряд {внутренние волосковые клетки), а приблизительно 12—20 тысяч наружных волосковых клеток образуют три, а в области верхушки улитки пять продольных рядов. На обращенной внутрь средней лестницы поверхности волосковых клеток имеются покрытые плазматической мембраной чувствительные волоски — стереоцилии. Волоски соединены с цитоскелетом, их механическая деформация ведет к открытию катионных каналов мембраны и возникновению рецепторного потенциала волосковых клеток. Над кор-тиевым органом имеется желеобразная покровная, или текториальная, пластинка, образованная гликопротеином и коллагеновыми волокнами и прикрепленная к внутренней стенке лабиринта. Верхушки стереоцилии наружных волосковых клеток погружены в вещество покровной пластинки. 17.4.2.4. Функция внутреннего уха Вызванные звуковыми волнами колебания барабанной перепонки и слуховых косточек сообщаются через овальное окно перилимфе вестибулярной лестницы и распространяются через геликотрему на барабанную лестницу, которую отделяет от полости среднего уха круглое окно, закрытое тонкой и упругой мембраной, повторяющей колебания перилимфы. Колебания стремечка вызывают распространение следующих одна за другой бегущих волн, которые перемещаются по основной мембране от основания улитки к геликотреме. Звуковая волна распространяется по вестибулярной лестнице к геликотреме практически мгновенно (примерно за 2 • 10~5 секунды). Вызванное этой волной гидростатическое давление смещает весь улитковый ход в направлении барабанной лестницы, одновременно с этим покровная пла- 17. Сенсорные системы • 739 стинка сдвигается относительно поверхности кортиева органа. Ось вращения покровной пластинки расположена выше оси вращения основной мембраны, и поэтому в области амплитудного максимума бегущей волны возникает срезающее усилие. В результате покровная пластинка деформирует пучки стереоцилий волосковых клеток, что приводит к их возбуждению, передающемуся окончаниям первичных сенсорных нейронов. Помимо воздушной передачи колебаний с участием барабанной перепонки движение жидкости внутреннего уха можно вызвать посредством костного проведения звуковых волн. Так, например, звуковые колебания камертона можно слышать и при закрытом слуховом проходе, если поставить его ножку на сосцевидный отросток височной кости или на темя. Использование костных телефонов, установленных за ушными раковинами, тоже основано на костном проведении звука. 17.4.2.5. Биоэлектрические процессы в кортиевом органе Различия ионного состава эндолимфы, содержащей около 155 ммоль/л ионов калия, т. е. близкой к внутриклеточной, и перилимфы с высокой концентрацией ионов натрия (около 140 ммоль/л) создают между ними разность потенциалов около +80 мВ, которая называется эндокохлеарным потенциалом. Мембранный потенциал покоя волосковых клеток составляет около —80 мВ, поэтому между эндолимфой и внутриклеточной средой ре-цепторных клеток существует разность потенциалов около 160 мВ. Столь значительная разность потенциалов способствует возбуждению волосковых клеток даже при действии слабых звуковых сигналов, вызывающих незначительные колебания основной мембраны. При деформации стереоцилий волосковых клеток в них возникает рецепторный потенциал, что приводит к выделению медиатора глутамата, действующего на окончания слуховых нервов и тем самым возбуждающего их. 17.4.2.6. Частотное кодирование Амплитуда и скорость распространяющихся по основной мембране бегущих волн зависят от механических свойств этой мембраны. Вблизи овального окна жесткость основной мембраны приблизительно в 100 раз выше, чем в завитках улитки, поэтому возле овального окна волны распространяются с максимальной скоростью и с минимальной амплитудой. Амплитуда бегущих волн возрастает в менее натянутых участках основной мембраны, но затем гасится сопротивлением жидкости неподалеку от геликотремы. Между точкой появления и точкой затухания бегущей волны существует амплитудный максимум, место возникновения которого зависит от частоты звуковых колебаний. Это место расположено тем ближе к овальному окну, чем большей окажется частота звуковых колебаний, и наоборот: чем ниже частота колебаний, тем дальше от овального окна возникнет амплитудный максимум. Звуковые волны разной частоты вызывают наиболее сильные колебания основной мембраны в разных ее участках, каждый из которых соответствует определенной частоте слухового диапазона. Ближе к овальному окну располагаются участки мембраны, настроенные на восприятие высоких звуков, область вершины улитки предназначена для возбуждения низкими частотами. Такая структурно-функциональная организация рецепторной поверхности основной мембраны определяется как тонотопическая. Во-лосковые клетки сильнее всего возбуждаются в области амплитудного мак- 24' 740 • ФУНКЦИИ СИСТЕМ ЖИЗНЕОБЕСПЕЧЕНИЯ ОРГАНИЗМА симума, при действии комплексных звуковых волн одновременно активируются рецепторы нескольких участков основной мембраны. Каждый из них обладает специфической чувствительностью к определенной частоте звуковых колебаний, на которую он «настроен», и не возбуждается при отсутствии такой частоты в комплексной звуковой волне. Рецепторные потенциалы волосковых клеток отражают не только значение амплитуды, но также крутизну нарастания волн и интервалы между ними, что предоставляет дополнительные характеристики действующего звукового сигнала. 17.4.2.7. Кодирование сенсорной информации в окончаниях слухового нерва Информацию о характере колебаний основной мембраны проводят приблизительно 30—40 тысяч волокон слухового нерва, среди которых 90 % несут сигналы от внутренних волосковых клеток. Разрушение этих клеток у экспериментальных животных повышает порог слуховой чувствительности на 80—100 дБ, что фактически означает глухоту, тогда как разрушение всех наружных волосковых клеток увеличивает порог только на 40—45 дБ. Каждый нейрон спирального ганглия контактирует только с одной внутренней волосковой клеткой, которая, в свою очередь, имеет синапсы приблизительно с 10—20 сенсорными нейронами, образующими нейронный канал для передачи информации о собственной характеристической частоте звука. Такие каналы не активируются другими частотами, поэтому диффе-ренцировка звуковых раздражителей по частоте осуществляется уже на уровне преобразования механических процессов в электрическую активность. В восприятии каждой характеристической частоты звукового стимула участвуют приблизительно 150 наружных волосковых клеток, передающих возбуждение 10—15 сенсорным нейронам. Наружные волосковые клетки являются не только рецепторами, но также эффекторами, получающими в составе слухового нерва эфферентные волокна от нейронов верхнеоливарного ядра. Эфферентная активация наружных волосковых клеток происходит в ответ на действие звукового стимула и состоит в сокращениях актиновых филаментов этих клеток, происходящих с частотой звукового сигнала. Повторяя частоту колебаний слабых звуковых сигналов, наружные волосковые клетки их усиливают и одновременно создают звуковое излучение кортиева органа (эндокохлеарная эмиссия), которое можно зарегистрировать с помощью микрофона. Волокна слухового нерва обладают фоновой активностью в пределах 50—100 импульсов в 1 с, которая увеличивается при повышении уровня звука, тем самым кодируя информацию об интенсивности звукового давления. Кроме этого, кодирование информации об уровне звука происходит за счет возбуждения дополнительного числа сенсорных нейронов, имеющих относительно высокий порог чувствительности и находившихся ранее в состоянии фоновой активности. При действии звуковых раздражителей с частотой до 5000 Гц импульсная активность нейронов отражает повышение звукового давления в каждой фазе повторяющихся циклов звуковых колебаний. Максимальная активность возникает во время фазы подъема звуковой волны, а затем она уменьшается, чем передается информация о временной структуре сигналов. При продолжительной слуховой стимуляции частота нервных импульсов постепенно уменьшается вследствие развития адаптации к действию звуковых стимулов. 17. Сенсорные системы • 741 17.4.3. Проводящие пути и переключательные ядра слуховой системы Центральные отростки первичных слуховых нейронов спирального ганглия образуют две ветви: к вентральному и дорсальному улитковым (кохлеар-ным) ядрам продолговатого мозга (рис. 17.14). В каждом ядре существует тонотопически организованное представительство кортиева органа. Нейроны дорсального улиткового ядра образуют проекцию на верхнее ядро оливы противоположной стороны, а нейроны вентрального ядра — на ипсилате-ральные и контралатеральные верхние ядра олив. Перекрест нервных волокон обеспечивает передачу акустической информации на противоположную каждому уху сторону мозга.
В ядрах верхних олив большинство нейронов возбуждается бинаурально, Рис. 17.14. Упрощенная схема проводящих путей и переключательных ядер слуховой сенсорной системы.
Сенсорные нейроны второго порядка расположены в улитковых (кохлеарных) ядрах, в каждом ядре имеется собственное представительство кортиева органа. Нейроны улитковых ядер образуют ипсилатеральные и контралатеральные проекции на ядра верхней оливы, здесь происходит бинауральный анализ звуковых сигналов и сохраняется тонотопия. В нижних буфах четверохолмия существуют нейронные переключения, необходимые для ориентировочных реакций на звуковые сигналы. В медиальном коленчатом теле фоновая активность нейронов изменяется в соответствии с афферентными сигналами и происходит анализ их временных характеристик. Слуховая кора расположена в полях 41 и 42, кортикальные колонки в ней упорядочены тонотопически. 742 • ФУНКЦИИ СИСТЕМ ЖИЗНЕОБЕСПЕЧЕНИЯ ОРГАНИЗМА мально активны при расхождении времени поступления сигналов от правого и левого уха, другие нейроны наиболее сильно реагируют на различную интенсивность сигналов. Такие нейроны образуют проекцию на верхние бугры четверохолмия, куда одновременно поступает зрительная информация, что позволяет нейронам четверохолмия создавать трехмерную карту слухового пространства и определять пространственное положение источника звука. Благодаря бинау-ральному слуху сенсорная система человека определяет источники звука, находящиеся в стороне от средней линии, поскольку звуковые волны раньше действуют на ближнее к этому источнику ухо. Слуховая система реагирует на 1 дБ различий звукового давления, действующего на правое и левое ухо, и фиксирует временное запаздывание действия звука на отдаленное от него ухо всего в 3 • 10~5 с. Большая часть аксонов верхних оливарных ядер проходит в составе латерального лемнискового пути к нижним буграм четверохолмия, нейроны которого участвуют в формировании рефлекторной дуги ориентировочного рефлекса, а также осуществляют анализ поступающей информации. Он обеспечивается наличием в нижних буграх четверохолмия нейронов, которые возбуждаются только частотными модуляциями тона, т. е. повышением или понижением высоты действующего звукового сигнала. Другие нейроны этих переключательных ядер активируются только изменениями амплитуды звуковой волны, т. е. увеличением или уменьшением громкости звукового сигнала. Большинство переключательных нейронов нижнего двухолмия образуют проекцию на медиальное коленчатое тело, представляющее следующий иерархический уровень слуховой системы. Медиальное коленчатое тело, относящееся к таламусу, является последним переключательным ядром слуховой системы на пути к коре. Его нейроны расположены тонотопически и образуют проекцию в слуховую кору. Некоторые нейроны медиального коленчатого тела активируются в ответ на возникновение либо на окончание сигнала, другие реагируют только на частотные или амплитудные его модуляции. Во внутреннем коленчатом теле имеются нейроны, способные постепенно увеличивать активность при неоднократном повторении одного и того же сигнала. Большинство нейронов медиального коленчатого тела обладают спонтанной фоновой активностью, проявляющейся чередованием серий потенциалов действия и пауз между ними.
|
|||||||||||||||
Последнее изменение этой страницы: 2016-04-21; просмотров: 637; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.24.238 (0.01 с.) |