Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Технологическое заболевание бездныСодержание книги
Поиск на нашем сайте
Чтобы собирать чудесные россыпи на дне морском, и так много сулящие будущему нашей промышленности, чтобы разместить в открытом море искусственные острова нефтяных платформ, чтобы ремонтировать их на большой глубине, Технологическому человеку нужны будут новые средства, новые машины, неограниченные капиталы. Как сказал мой друг доктор Шарли с присущим ему юмором, “эксплуатация больших глубин — это прежде всего проблема больших капиталов”.
Философия Технологического человека в вопросе завоевания океанов отчасти могла бы выразиться так: “Для эксплуатации богатств океана необходимы новое снаряжение и техника. Чтобы обзавестись этим, нужны капиталы... огромные капиталы. Откуда их взять? Из моря, естественно!” И так далее, адская круговерть не имеет конца. Сначала это всего лишь вопрос глубины. Когда ограблено все, что возможно, на глубине “X”, ничего другого не остается, как опуститься немного ниже.
Вы мне не верите? Вспомните героическую эпоху нефтяной эксплуатации. Она началась с очень богатых подземных пластов в благоприятных для эксплуатации областях нашей планеты. Затем техника улучшилась, и это позволило понемногу качать нефть повсюду на земле, в самых неожиданных регионах. Сейчас, когда запасы нефти иссякают, ничего не придумано лучше, как черпать ее прямо с морского дна. Начиналось скромно и робко в не очень глубоких водах, не слишком далеко от берега. Всего за двадцать лет техника добычи сделала головокружительный скачок, впрочем, как и глубина. Искусственные островки растут в открытом море со скоростью грибов. Скоро действующие разработки будут расположены на 2000 м, и способность Технологического человека работать на такой глубине, дыша все более сложными газовыми смесями, перестанет быть утопией.
В будущем все более глубокий спуск будет стоить все дороже. Техника усложнится, водолазные работы подорожают, а список жертв “несчастных случаев на производстве” станет длиннее. Всего несколько лет назад сжатый воздух, используемый в аквалангах для дыхания, вызывал на 60-метровой глубине различного вида расстройства — наркозы, обязанные преимущественно растворению азота в крови и токсичности кислорода под давлением. В наши дни подводники привыкли к этому и могут, пренебрегая некоторыми основными правилами техники безопасности, погружаться гораздо ниже. Для достижения больших глубин сжатый воздух заменили смесью кислорода и гелия. Стали удивляться возможности ныряльщиков опускаться на 300 и 450 м в кессоне (в ложном погружении). Но появились новые нарушения в организме из-за использования этих смесей в среде, подвергнутой высоким давлениям. Ниже уровня 300 м и проявлялся “синдром высокого давления”.
Но исследователи не признали себя побежденными. Американцы и прежде всего французы, в особенности команда СОМЕХ из Марселя, под руководством доктора Ксавьера Фрукту продолжали свои эксперименты погружений, как ложных, так и в открытом морс. Так, в одном из гипербарокессонов во время операции “Физалия-VI” был побит невероятнейший рекорд в 610 м, когда 10 мая 1972 г. два молодых француза, Роберт Горэ и Патрик Шемин, оставались на этой глубине в течение часа. Их декомпрессия продолжалась потом десять дней. Затем, также в СОМЕХ, в ходе операции “Стрелец-IV” состоялось 50-часовое пребывание на той же глубине Клода Бурдье и Алена Журде.
Американцы отправили работать людей на глубину 350 м, а два французских акванавта (Жак Верно и Жерар Виаль) совершили двадцатиминутное “пике” на глубину 501 м, выполняя операцию “Никогда”, которая проходила в открытом море у Кавальер, во Франции, в октябре 1977 г. и состояла из серии работ акванавтов на глубине 460 м.
Пятьсот метров под поверхностью воды без брони, без стального панциря, как. к примеру, на подлодке, чтобы защитить этот нежный часовой механизм, каким является человеческий организм.—как вы думаете, легко ли это? Некомпетентный читатель задаст себе, конечно, пару вопросов. Отвечу коротко. На глубине 500 м любой предмет или организм испытывает давление на каждый квадратный сантиметр в 51 кг. В подводной лодке стального панциря часто бывает достаточно, чтобы не быть раздавленным: люди внутри ее дышат воздухом под нормальным давлением (1 кг на 1 см2). Чтобы ныряльщик мог спуститься на глубину 500 м. нужно, чтобы его легкие и все воздушные полости организма, от самых крупных, как грудная клетка, до самых малых, как зубы, были постепенно заполнены смесью сжатых газов до тех пор, пока давление внутри не станет равно оказываемому водой снаружи. В нашем конкретном случае, следовательно, необходимы 51 кг давления на каждый квадратный сантиметр внутренних органов подводника, чтобы уравновесить 51 кг на 1 см2 гидростатического давления глубины. Требуется много часов, чтобы сдавить человека до такой степени, и много дней, чтобы вывести его из этого состояния. Делается это в специальных кессонах, в гипербароцентрах или на борту кораблей, оснащенных соответствующей аппаратурой. Затем, избегая любого неожиданного понижения давления, подводников “переливают” из одного кессона в другой (так, как делают астронавты в космосе) и помещают в башенку, которая погружается на желаемую глубину. Я умышленно избегаю использовать здесь техническую лексику специалистов, которые, я надеюсь, простят меня, если я таким образом упрощаю вещи.
Башенка постоянно связана с кораблем на поверхности, по трубам в нее текут горячая вода для обогрева комбинезонов подводников и различные смеси газов для дыхания. Чем-то эти трубы напоминают пуповину. Когда давление внутри башенки, а следовательно, и внутри тела водолазов становится равным гидростатическому давлению, можно открыть форточку. Вода не войдет внутрь, а подводники могут свободно выйти, продолжая, конечно, быть связанными с башенкой своими “пуповинами” — трубами, несущими тепло и газ для дыхания. Представьте себе этих ныряльщиков на глубине 500 м. Их хрупкое тело содержит газа в 51 раз больше нормального. Точнее, в том же самом теоретическом легочном объеме (а также в других воздушных полостях организма, называемых мертвым пространством) сжались, сплющились 51 единица вместо одной-единственной. Этот сжатый газ, который может взорваться при малейшем непредвиденном уменьшении давления, просачивается повсюду в организме водолаза и растворяется в жидкостях: крови, лимфе и т. д. Если, к несчастью, подводник поднялся бы быстрее предусмотренного или была бы допущена ошибка в расчетах времени декомпрессии, возникла бы опасность кессонной болезни, являющейся причиной паралича и часто смерти.
На глубине 500 м под поверхностью моря царит кромешный мрак. Очень холодно. Если бы трубопроводы горячей воды испортились, подводник не выдержал бы и нескольких минут. Работает он при свете мощных прожекторов. Его движения продуманы и рассчитаны до автоматизма. Он трезв, однако это та трезвость, что является частью искусственного и поэтому мрачного состояния,—я готов назвать ее трезвостью человека-робота. Его пребывание под водой, где властвуют нервное напряжение и тревога, регулируется математическими законами; безмятежной радости, интимной близости с морской стихией очень, очень мало. Прежде всего он чувствует холод металла и кислый вкус газовой смеси, этого яда, который дьявольская изобретательность человека смогла приспособить для дыхания, в большей степени он испытывает глубокое желание покончить скорее с этой работой, чтобы вновь обрести свежий воздух земли, семью, товарищей и компенсацию в звонкой монете... очень звонкой! Но имеет ли все это смысл на самом деле (ни жизнь, ни здоровье в действительности не определяются никакой ценой)? И водолазы, привлеченные высоким заработком, романтикой (зачастую преувеличенной) профессии, знают об опасности и вредных последствиях, проявляющихся в организме спустя длительное время и сначала едва уловимых. Это костный некроз (омертвение и распад ткани под влиянием нарушения кровообращения, химическою или термического воздействия, травм и др), патология на фиброзном и клеточном уровне, микропузыри, которые никогда полностью не исчезают и играют скверные шутки в самые непредвиденные моменты и т. д.
Кроме того, производительность и эффективность в эти несколько минут работы на подводных строительных площадках в сравнении с днями и неделями декомпресии совершенно не соответствуют тем огромным капиталам, которые эти дни и недели поглощают.
“Конечно, будет продолжен поиск смешанных газов, к старым проблемам больших глубин добавятся новые, которые со временем состарятся, и появятся опять новые, еще более сложные, и так без конца”,—говорил мне в 1969 г. пионер и поэт моря командор Филипп Таййе.
Следовательно, надо будет искать новые пути...
Новые пути
Вот уже около двадцати лет некоторые ученые и исследователи проводят опыты по созданию растворов, которые исключили бы использование любых газов, поскольку газы и прямой эффект самого давления на клетки — это два главных препятствия к проникновению человека в море с помощью дыхательных аппаратов.
Среди этих новых путей мы отметим прежде всего:
а) эксперименты американского врача Дж. А. Килстра, которому удалось заставить мышей, собак и других подопытных животных дышать растворами типа физиологической сыворотки;
б) эксперименты двух других американских врачей, Кларка и Голлана, в которых их подопытные животные смогли дышать специальной жидкостью, состоящей из насыщенного кислородом фтороуглерода;
в) искусственные мембраны доктора У. Л. Робба для почек, которые он пытался приспособить к подводному дыханию.
И наконец, два проекта будущего двух по-своему гениальных людей:
г) homo aquaticus командора Жака Кусто;
д) батинавт доктора Эмиля Гвиллерма.
Водные мыши Килстра
Лейденский университет, Соединенные Штаты Америки, 1961. В своей лаборатории молодой доктор Джон А. Килстра поместил белую мышь в герметически закрытую ванночку наподобие маленького гипербарокессона, частично заполненную водой. Затем под давлением стал закачивать туда кислород.
При нормальном атмосферном давлении (1 кг на 1 см2) морская вода содержит 7 мл кислорода в 1 л: рыбы, снабженные жабрами, отлично им дышат. Для дыхания млекопитающего в жидкой среде необходимо, чтобы это соотношение составило 200 мл на 1 л. Сделать это возможно, только значительно повысив давление, вот для чего необходим гипербарокессон. И еще существует масса технических проблем, о них мы говорить не будем. А что же мышь? Помещенная в новую среду, она сначала отчаянно пытается подняться на поверхность, но затем успокаивается, начинает дышать раствором и в конце концов становится настоящим водным животным. По различным причинам, которые надо было бы слишком долго здесь анализировать, мышь не живет обычно больше восемнадцати часов. А это уже огромный успех. Одна из основных причин смерти — высокая вязкость воды, которая в 36 раз больше вязкости воздуха, что вынуждает мышь расходовать в 36 раз больше энергии, чтобы освободиться от воды во время выдоха. Кроме того, от нее требуется вдохнуть и выдохнуть двойное по сравнению с воздухом количество воды для удаления избытка углекислого газа, хотя он и был частично кондиционирован в жидкости благодаря фармацевтической
добавке, о которой еще услышат будущие экспериментаторы и которая может продлить время апноэ, снижая действие СО2 на организм. Речь идет о ТНАМ (тринитрокси-метил аминометан, продукт-пробка органического происхождения). Все эти усилия требуют от мышей огромных затрат энергии, в 60 раз больших, чем на воздухе.
Затем проблема осмоса. Мы говорили в главе “Океан в человеке” об определенном сходстве между кровью и морской водой. Однако кровь богаче хлором, натрием, различными ионами, органическими кислотами, протеином и т. д. Необходимо, следовательно, сделать этот раствор для дыхания изотоническим (имеющий одинаково осмотическое давление) по отношению к крови, т. е. обогатить его хлористым натрием до концентрации 9 на 1000.
Для простоты дела доктор Килстра снизил температуру воды до 20° (температура мыши — 40°), что привело к замедлению у животного основного метаболизма и уменьшению его потребности в кислороде.
Но ни одна мышь не прожила больше восемнадцати часов.
Подводные собачки
Через несколько лет Килстра предпринял в лаборатории Университета Дархема в Северной Каролине новые эксперименты подобного рода, но на этот раз на собаках. Особая система позволяла животному, помещенному в гипербарический кессон под давлением 5 атмосфер (6 кг на 1 см2), дышать с минимальным усилием, чего не могла сделать мышь. Физиологический раствор с помощью резиновой трубки проникал непосредственно в легкие и так же выводился из них. Температура собаки снижалась с 40 до 32 °. Точность химического состава жидкости, которой она дышала, легко контролировалась. В конце эксперимента легкие освобождались от раствора с помощью вводимого под давлением кислорода. Обычно выживала одна собака из каждых четырех. Но в любом случае, мышь это или собака, животное умирает, если эксперимент продолжается слишком долго, потому что легкие — это не жабры и при дыхании жидкостью не удается с достаточной быстротой удалять избыток СО2- Увеличение его требует новых порций О2, процесс адсорбции которого ускоряется, повышая, следовательно, опять содержание СО2, и так далее до достижения в конце концов критической концентрации, приводящей к отравлению организма. Порочный этот круг неумолимо ведет к смерти.
Так ли уж необходимо продолжать убивать бедных животных?
Жидкое дыхание у человека
В главе “Океан в человеке” мы уже видели, как человеческий зародыш вчерне, в виде спазм, делает дыхательные движения, пока его легкие находятся в “коротком замыка- нии”, говоря языком ученого Боталло. Зародыш получает кислород из крови, поступающей через пуповину, связывающую его с материнской плацентой. Конечно же он “дышит” этой амниотической жидкостью, в которую полностью погружен. И в случае некоторых сложных родов, когда младенец не может быть извлечен немедленно, он в конце концов начнет “по-настоящему” дышать амниотической жидкостью в утробе матери, не умирая (при этом “дыхание” будет набирать силу постепенно, иначе легочные альвеолы могут взорваться).
Вот такие соображения и заставили думать Килсгру, что дыхание жидкостями для млекопитающих и, может быть, для человека — процесс не такой уж невозможный.
Доктора Ч. В. Паганелли, X. Рейтон и тот же Килстра попытались сконструировать что-то наподобие комбинации жабр и легких. Было выведено большое число уравнений, формул, сделано много выводов, чтобы прийти к заключению, что структура жабр гораздо сложнее структуры легочных альвеол в том, что касается газового обмена в воде. Все-таки некоторые ученые, убежденные, что предком человека была не обезьяна, а рыба, будут продолжать поиски методов, которые позволят человеку по его собственному усмотрению переключаться с легочного дыхания на водное. Один американский ныряльщик даже предоставил и распоряжение ученых одно свое легкое для экспериментов, подобных тем, что были сделаны на собаках. Физиологический раствор вводился в легкое и выходил из него таким же образом. Все прошло наиотличнейше, и легкое затем было высушено струей чистого кислорода: через восемь часов оно уже функционировало нормально.
Я никогда больше не слышал об этом эксперименте. Если бы он был реализован успешно сразу на двух человеческих легких, мы бы об этом узнали.
|
|||||||||
Последнее изменение этой страницы: 2016-04-21; просмотров: 191; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.78.185 (0.015 с.) |