Подсчет критерия U Манна-Уитни. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Подсчет критерия U Манна-Уитни.

Поиск

1. Перенести все данные испытуемых на индивидуальные карточки.

2. Пометить карточки испытуемых выборки 1 одним цветом, скажем красным, а все карточки из выборки 2 - другим, например синим.

3. Разложить все карточки в единый ряд по степени нарастания при­знака, не считаясь с тем, к какой выборке они относятся, как если бы мы работали с одной большой выборкой.

4. Проранжировать значения на карточках, приписывая меньшему зна­чению меньший ранг. Всего рангов получится столько, сколько у нас (n1+п2).

5. Вновь разложить карточки на две группы, ориентируясь на цветные обозначения: красные карточки в один ряд, синие - в другой.

6. Подсчитать сумму рангов отдельно на красных карточках (выборка 1) и на синих карточках (выборка 2). Проверить, совпадает ли об­щая сумма рангов с расчетной.

7. Определить большую из двух ранговых сумм.

8. Определить значение U по формуле:

где n1 - количество испытуемых в выборке 1;

n2 - количество испытуемых в выборке 2;

Тх - большая из двух ранговых сумм;

nх - количество испытуемых в группе с большей суммой рангов.

9. Определить критические значения U по Табл. II Приложения 1. Если Uэмп.>Uкp 005, Но принимается. Если Uэмп Uкp_005, Но от­вергается. Чем меньше значения U, тем достоверность различий выше.

Теперь проделаем всю эту работу на материале данного примера. В результате работы по 1-6 шагам алгоритма построим таблицу.

Таблица 2.4

Подсчет ранговых сумм по выборкам студентов физического и психа-логического факультетов

Студенты-физики (n1=14) Студенты-психологи (n2=12)
Показатель невербального интеллекта Ранг Показатель невербального интеллекта Ранг
 
       
       
       
       
       
  20,5    
  20,5    
       
       
       
  15,5   15.5
      14'
  11.5   11,5
  11,5    
  11,5    
       
       
  6.5   6,5
  4,5   4,5
       
       
       
Суммы        
Средние 107,2   111,5  

Общая сумма рангов: 165+186=351. Расчетная сумма:

Равенство реальной и расчетной сумм соблюдено.

Мы видим, что по уровню невербального интеллекта более "высоким" рядом оказывается выборка студентов-психологов. Именно на эту выборку приходится большая ранговая сумма: 186.

Теперь мы готовы сформулировать гипотезы:

H0: Группа студентов-психологов не превосходит группу студентов-физиков по уровню невербального интеллекта.

Н1: Группа студентов-психологов превосходит группу студентов-физиков по уровню невербального интеллекта.

В соответствии со следующим шагом алгоритма определяем эмпи­рическую величину U:

Поскольку в нашем случае п\Фп2, подсчитаем эмпирическую величину U и для второй ранговой суммы (165), подставляя в формулу соответствующее ей пх:

Такую проверку рекомендуется производить в некоторых руководствах (Рунион Р., 1982; Greene J., D'Olivera M., 1989). Для сопоставления с критическим значе­нием выбираем меньшую величину U: Uэмп=60.

По Табл. II Приложения 1 определяем критические значения для n1 =14, n2=12.

Мы помним, что критерий U является одним из двух исключений из общего правила принятия решения о достоверности различий, а именно, мы можем констатировать достоверные различия, если Uэмп Uкp

Построим "ось значимости".

Uэмп = 60

Uэмп > Uкp

Ответ: H0 принимается. Группа студентов-психологов не превос­ходит группы студентов-физиков по уровню невербального интеллекта.

Обратим внимание на то, что для данного случая критерий Q Розенбаума неприменим, так как размах вариативности в группе физи­ков шире, чем в группе психологов: и самое высокое, и самое низкое значение невербального интеллекта приходится на группу физиков (см. Табл. 2.4).

 

Н - критерий Крускала-Уоллиса

Назначение критерия

Критерий предназначен для оценки различий одновременно между тремя, четырьмя и т.д. выборками по уровню какого-либо признака.

Он позволяет установить, что уровень признака изменяется при переходе от группы к группе, но не указывает на направление этих из­менений.

Описание критерия

Критерий Н иногда рассматривается как непараметрический ана­лог метода дисперсионного однофакторного анализа для несвязных вы­борок (Тюрин Ю. Н., 1978). Иногда его называют критерием "суммы рангов" (Носенко И.А., 1981).

Данный критерий является продолжением критерия U на боль­шее, чем 2, количество сопоставляемых выборок. Все индивидуальные значения ранжируются так, как если бы это была одна большая выбор­ка. Затем все индивидуальные значения возвращаются в свои первона­чальные выборки, и мы подсчитываем суммы полученных ими рангов отдельно по каждой выборке. Если различия между выборками случай­ны, суммы рангов не будут различаться сколько-нибудь существенно, так как высокие и низкие ранги равномерно распределятся между вы­борками. Но если в одной из выборок будут преобладать низкие значе­ния рангов, в другой - высокие, а в третьей - средние, то критерий Н позволит установить эти различия.

Гипотезы

H0: Между выборками 1, 2, 3 и т. д. существуют лишь случайные раз­личия по уровню исследуемого признака.

Н1: Между выборками 1, 2, 3 и т. д. существуют неслучайные разли­чия по уровню исследуемого признака.



Поделиться:


Последнее изменение этой страницы: 2016-04-20; просмотров: 480; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.146.89 (0.01 с.)