Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ошибка, состоящая в том, что мы приняли нулевую гипотезу, в то время как она неверна, называется ошибкой II рода.

Поиск

Вероятность такой ошибки обозначается как β. Мощность крите­рия - это его способность не допустить ошибку II рода, поэтому:

Мощность=1—β

Мощность критерия определяется эмпирическим путем. Одни и те же задачи могут быть решены с помощью разных критериев, при этом обнаруживается, что некоторые критерии позволяют выявить раз­личия там, где другие оказываются неспособными это сделать, или вы­являют более высокий уровень значимости различий. Возникает вопрос: а зачем же тогда использовать менее мощные критерии? Дело в том, что основанием для выбора критерия может быть не только мощность, но и другие его характеристики, а именно:

а) простота;

б) более широкий диапазон использования (например, по отношению к данным, определенным по номинативной шкале, или по отношению к большим n);

в) применимость по отношению к неравным по объему выборкам;

г) большая информативность результатов.

Классификация задач и методов их решения

Множество задач психологического исследования предполагает те или иные сопоставления. Мы сопоставляем группы испытуемых по ка­кому-либо признаку, чтобы выявить различия между ними по этому признаку. Мы сопоставляем то, что было "до" с тем, что стало "после" наших экспериментальных или любых иных воздействий, чтобы опреде­лить эффективность этих воздействий. Мы сопоставляем эмпирическое распределение значений признака с каким-либо теоретическим законом распределения или два эмпирических распределения между собой, с тем, чтобы доказать неслучайность выбора альтернатив или различия в форме распределений.

Мы, далее, можем сопоставлять два признака, измеренные на одной и той же выборке испытуемых, для того, чтобы установить сте­пень согласованности их изменений, их сопряженность, корреляцию между ними.

Наконец, мы можем сопоставлять индивидуальные значения, по­лученные при разных комбинациях каких-либо существенных условий, с тем чтобы выявить характер взаимодействия этих условий в их влиянии на индивидуальные значения признака.

Именно эти задачи позволяет решить тот набор методов, который предлагается настоящим руководством. Все эти методы могут быть ис­пользованы при так называемой "ручной" обработке данных.

Краткая классификация задач и методов дана в Таблице 1.2.

Таблица 1.2

Классификация задач и методов их решения
Задачи Условия Методы
1.Выявление различий в уровне исследуемого признака а) 2 выборки испытуемых Q- критерий Розенбаума; U - критерий Манна-Уитни; φ* - критерий (угловое преобразование Фишера)
  б) 3 и более выбо­рок испытуемых S - критерий тенденций Джонкира; Н - критерий Крускала-Уоллиса.
2. Оценка сдвига зна­чений исследуемого признака а) 2 замера на од­ной и той же вы­борке испытуемых Т - критерий Вилкоксона; G - критерий знаков; φ* - критерий (угловое преобразование Фишера).
  б) 3 и более заме­ров на одной и той же выборке испы­туемых χл2 - критерий Фридмана; L - критерий тенденций Пейджа.
3. Выявление различий в распределении а) при сопоставлении эмпирического признака распределения с теоретическим χ2 - критерий Пирсона; λ - критерий Колмогорова-Смирнова; m - биномиальный критерий.
  б) при сопоставле­нии двух эмпириче­ских распределений χ2 - критерий Пирсона; λ - критерий Колмогорова-Смирнова; φ* - критерий (угловое преобразование Фишера).
4.Выявление степени согласованности изменений а) двух признаков rs - коэффициент ранговой корреляции Спирмена.
  б) двух иерархий или профилей rs - коэффициент ранговой корреляции Спирмена.
5. Анализ изменений признака под влия­нием контролируе­мых условий а) под влиянием одного фактора S- критерий тенденций Джонкира; L - критерий тенденций Пейджа; однофакторный дисперсионный анализ Фишера.
  б) под влиянием двух факторов одновременно Двухфакторный дисперсионный анализ Фишера.

1.9. Принятие решения о выборе метода математической об­работки

Если данные уже получены, то вам предлагается следующий ал­горитм определения задачи и метода.

АЛГОРИТМ 1

Принятие решения о задаче и методе обработки на стадии, когда данные уже получены

1. По первому столбцу Табл. 1.2 определить, какая из задач стоит в вашем исследовании.

2. По второму столбцу Табл. 1.2 определить, каковы условия решения вашей задачи, например, сколько выборок обследовано или на какое количество групп вы можете разделить обследованную выборку.

3. Обратиться к соответствующей главе и по алгоритму принятия решения о выборе критерия, приведенного в конце каждой главы, определить, какой именно метод или критерий вам целесообразно использовать.

Если вы еще находитесь на стадии планирования исследования, то лучшее заранее подобрать математическую модель, которую вы бу­дете в дальнейшем использовать. Особенно необходимо планирование в тех случаях, когда в перспективе предполагается использование крите­риев тенденций или (в еще большей степени) дисперсионного анализа., В этом случае алгоритм принятия решения таков:

АЛГОРИТМ 2

Принятие решения о задаче и методе обработки на стадии планирования исследования

1. Определите, какая модель вам кажется наиболее подходящей для доказательства] ваших научных предположений.

2. Внимательно ознакомьтесь с описанием метода, примерами и задачами для самостоятельного решения, которые к нему прилагаются.

3. Если вы убедились, что это то, что вам нужно, вернитесь к разделу "Ограничения критерия" и решите, сможете ли вы собрать данные, которые будут отвечать этим ограничениям (большие объемы выборок, наличие не­скольких выборок, монотонно различающихся по какому-либо признаку, напри­мер, по возрасту и т.п.).

4. Проводите исследование, а затем обрабатывайте полученные данные по заранее! выбранному алгоритму, если вам удалось выполнить ограничения.

5. Если ограничения выполнить не удалось, обратитесь к алгоритму 1.

В описании каждого критерия сохраняется следующая последова­тельность изложения:

· назначение критерия;

· описание критерия;

· гипотезы, которые он позволяет проверить;

· графическое представление критерия;

· ограничения критерия;

· пример или примеры.

Кроме того, для каждого критерия создан алгоритм расчетов. Ес­ли критерий сразу удобнее рассчитывать по алгоритму, то он приводит­ся в разделе "Пример"; если алгоритм легче можно воспринять уже после рассмотрения примера, то он приводится в конце параграфа, со­ответствующего данному критерию.

Список обозначений

Латинские обозначения:

А - показатель асимметрии распределения

с - количество групп или условий измерения

d - разность между рангами, частотами или частостями

df - число степеней свободы в дисперсионном анализе

Е - показатель эксцесса

F - критерий Фишера для сравнения дисперсий

f - частота

f * - частость, или относительная частота

G - критерий знаков

Н - критерий Крускала-Уоллиса

i - индекс, обозначающий порядковый номер наблюдения

j - индекс, обозначающий порядковый номер разряда, класса, группы

k - количество классов или разрядов признака

L - критерий тенденций Пейджа

М - среднее значение признака или средняя арифметическая; то же, что и х

m - биномиальный критерий

n - количество наблюдений (испытуемых, реакций, выборов и т.п.)

N - общее количество наблюдений в двух или более выборках

Р - вероятность того, что событие произойдет

р - вероятность ошибки 1 рода (то же, что и а), уровень статисти­ческой значимости

Q - 1) вероятность того, что событие не произойдет; 2) критерий Розенбаума

rs - коэффициент ранговой корреляции Спирмена

S - критерий Джонкира

S2 - оценка дисперсии

Si - количество значений, которые выше или ниже данного значения

SS - суммы квадратов (в дисперсионном анализе)

Т - критерий Вилкоксона

Тс - суммы рангов по столбцам

Тк - большая сумма рангов в критерии U

U - критерий Манна-Уитни

Wn - размах вариативности, или диапазон значений от наименьшего до

наибольшего

хi - текущее наблюдение; каждое наблюдение по порядку

- среднее значение признака (то же, что и М)

Греческие обозначения:

α(альфа) - вероятность ошибки I рода (отклонения H0, которая верна)

β (бета) - вероятность ошибки II рода (принятия H0, которая неверна)

λ, (ламбда) - критерий Колмогорова-Смирнова

v (ню) - число степеней свободы в непараметрических критериях

σ (сигма) - стандартное отклонение

φ (фи) - центральный угол, определяемый по процентной доле в критерии φ*

φ* (фи) - критерий Фишера с угловым преобразованием

χ2 (хи-квадрат) - критерий Пирсона

χ2 r (хи-ар-квадрат) - критерий Фридмана.


ГЛАВА 2



Поделиться:


Последнее изменение этой страницы: 2016-04-20; просмотров: 329; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.23.92.64 (0.007 с.)