Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Геометрия простых и сложных молекулСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Одинарная и кратная свзяь Связи σ и π. Одинарные и кратные связи Два атома между собой могут образовывать и кратные связи, то есть двойные и тройные. При этом составляющая, образующаяся первой, всегда будет σ-связью (обладает наибольшей прочностью и определяет геометрическую форму молекулы). Вторая и третья составляющие называются π-связями, они образуются при боковом перекрывании любых орбиталей, кроме s -орбиталей: Например, 2 p -орбитали двух атомов углерода могут сформировать между собой одинарную, двойную и тройную связи. В первом случае образуется остов молекулы этана C2H6. При двойном связывании атомов углерода первые 2 p -орбитали создают σ-связь, а вторые - π-связь; в этом случае образуется остов молекулы этилена C2H4. При тройном связывании (одна σ-связь, две π-связи) образуется остов молекулы ацетилена C2H2. Такие кратные связи всегда короче и прочнее, чем одинарные, их труднее разорвать. Часто именно этим объясняется химическая инертность веществ - таких, как азот N2 (:N≡N:) и диоксид углерода CO2 (O=C=O). Примеры частиц с кратными связями - это также молекулы SO3, SO2, NO2 и анионы CO32−, SO42−, SO32− Ионная свзяь и ее свойства Образуется за счет полной передачи одного или нескольких электронов между атомами. Атом, отдающий электрон (электроны), становится катионом, а принимающий – анионом. Ионная возникает как результат электростатических сил притяжения между противоположно заряженными ионами. Ионная связь характерна для соединений и элементов, атомы которых имеют большое различие значений электроотрицательности, она возникает между атомами щелочных металлов (электроположительные элементы) и галогенов (электроотрицательные элементы). СВОЙСТВА Структура ионных соединений Структура идеального ионного соединения, обусловленная максимальным притяжением между разноименными ионами и минимальным отталкиванием одноименных ионов, во многом определяется соотношением ионных радиусов катионов и анионов. Это можно показать простыми геометрическими построениями. 51. Донорно – акцепторная связь. Ее свойства, привести примеры Донорно-акцепторный механизм (иначе координационный механизм) — способ образования ковалентной химической связи между двумя атомами или группой атомов, осуществляемая за счет неподеленной пары электронов, атома-донора и свободной орбитали атома-акцептора. Термины «донорно-акцепторная связь» или «координационная связь» некорректны, поскольку это не есть вид химической связи, а лишь теоретическая модель, описывающая особенность её образования. Свойства ковалентной химической связи, образованной по донорно-акцепторному механизму, ничем не отличаются от свойств связей, образованных по обменному механизму (например, связи N—H в ионе аммония NH4+ или связи O—H в ионе гидроксония Н3O+). Образование аддукта аммиака итрифторида бора Донорами обычно выступают атомы азота, кислорода, фосфора, серы и др., имеющие неподелённые электронные пары на валентных орбиталях малого размера. Роль акцептора могут выполнять ионизированный атом водорода H+, некоторые p-металлы (напр., алюминий при образовании иона AlH4-) и, в особенности, d-элементы, имеющие незаполненные энергетические ячейки в валентном электронном слое. Именно с позиций донорно-акцепторного механизма описывается образование локализованных ковалентных связей в молекулах и молекулярных ионах комплексных (координационных) соединений: связь формируется за счёт неподелённой пары электронов лиганда и свободной орбитали атома-комплексообразователя. Донорно-акцепторный механизм также описывает образование промежуточных продуктов (интермедиатов) реакции, например, комплексов с переносом заряда. Модель донорно-акцепторного механизма существует только в рамках представлений о валентности как о локализации электронной плотности при образовании ковалентных связей (метод валентных схем). В рамках метода молекулярных орбиталей необходимости в подобных представлениях нет. Водродная связь Это тип межмолекулярных взаимодействий. Эти связи представляют собой слабые постоянно действующие силы между атомом Н, ковалентно связанным с очень электроотрицательным атомом А, и электроотрицательным атомом В, способным предоставить для образования связи свободную пару электронов. Водородную связь обозначают тремя точками. –А-Н…В- Водородные связи образуются только с атомами наиболее электроотрицательных элементов. Наиболее важные из них – F, O, N, Cl. ДОП. 53. Межмолекулярные силы взаимодействия, их свойства (силы Ван-дер-Вальса) Силы Ван-дер-Вальса включают в себя несколько видов взаимодействий: ориентационное диполь-дипольное, индукционное и дисперсионное. 1) Если две молекулы одного и того же вещества или различных веществ представляют собой постоянные диполи, то они притягиваются друг к другу противоположно заряженными краями и соответствующим образом ориентируются в пространстве. ФОРМУЛА (стр. 172). 2) Индукционное взаимодействие заключается в том, что полярная молекула вызывает поляризацию (индуцирует диполь) соседней неполярной молекулы. Далее они ориентируются относительно друг друга в пространстве. В конечном результате наблюдается взаимодействие: диполь – индуцированный диполь. ФОРМУЛА (стр. 172). 3) Дисперсионное взаимодействие - это слабые силы притяжения между нейтральными атомами, например атомами благородных газов, или молекулами, включая неполярные молекулы. ФОРМУЛА (стр. 173).
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 1332; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.49.252 (0.009 с.) |