Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Ряды, периоды, группы, подгруппы (s- p- d- f- элементы)Содержание книги
Поиск на нашем сайте
Каждый элемент занимает определённое место (клетку) в периодической системе и имеет свой порядковый (атомный) номер. Например:
Горизонтальные ряды элементов, в пределах которых свойства элементов изменяются последовательно, Менделеев назвал периодами (начинаются щелочным металлом (Li, Na, K, Rb, Cs, Fr) и заканчиваются благородным газом (He, Ne, Ar, Kr, Xe, Rn)). Исключения: первый период, который начинается водородом и седьмой период, который является незавершённым. Периоды разделяются на малые и большие. Малые периоды состоят из одного горизонтального ряда. Первый, второй и третий периоды являются малыми, в них находится 2 элемента (1-й период) или 8 элементов (2-й, 3-й периоды). Большие периоды состоят из двух горизонтальных рядов. Четвёртый, пятый и шестой периоды являются большими, в них находятся 18 элементов (4-й, 5-й периоды) или 32 элемента (6-й, 7-й период). Верхние ряды больших периодов называются чётными, нижние ряды – нечётными. В шестом периоде лантаноиды и в седьмом периоде актиноиды располагаются в нижней части периодической системы. В каждом периоде слева направо металлические свойства элементов ослабевают, а неметаллические свойства усиливаются. В чётных рядах больших периодов находятся только металлы. В результате в таблице имеется 7 периодов, 10 рядов и 8 вертикальных столбцов, названных группами – это совокупность элементов, которые имеют одинаковую высшую валентность в оксидах и в других соединениях. Эта валентность равна номеру группы. Исключения:
В VIII группе только Ru и Os имеют высшую валентность VIII. Группы - вертикальные последовательности элементов, они нумеруется римской цифрой от I до VIII и русскими буквами А и Б. Каждая группа состоит из двух подгрупп: главной и побочной. Главная подгруппа – А, содержит элементы малых и больших периодов. Побочная подгруппа – В, содержит элементы только больших периодов. В них входят элементы периодов, начиная с четвёртого. В главных подгруппах сверху вниз металлические свойства усиливаются, а не металлические свойства ослабляются. Все элементы побочных подгрупп являются металлами. Квантовые числа Главное квантовое число n определяет полную энергию электрона. Каждому числу соответствует энергетический уровень. n=1,2,3,4…или K,L,M,N… Орбитальное квантовое число l определяет подуровни на энергетическом уровне. Квантовое число l определяет форму орбиталей (n-1) 0,1,2… Магнитное квантовое число ml определяет число орбиталей на подуровне. …-2,-1,0,+1,+2… Общее число орбиталей на подуровне равно 2l+1 Спиновое квантовое число ms относится к двум различным ориентациям +1/2 -1/2 на каждой орбитали может быть только два электрона с противоположными спинами. Правило заполнения энергетических уровней и под уровней элементов периодической системы Первое правило Клечковского: при увеличении заряда ядра атомов заполнение энергетических уровней происходит от орбиталей с меньшим значением суммы главного и орбитального * квантовых чисел (n+l) к орбиталям с большим значением этой суммы. Следовательно, 4s-подуровень (n+l=4) должен заполняться раньше, чем 3d (n+l=5). Второе правило Клечковского, согласно которому при одинаковых значениях суммы (n+l) орбитали заполняются в порядке возрастания главного квантового числа n. Заполнение 3d-подуровня происходит у десяти элементов от Sc до Zn. Это атомы d-элементов. Затем начинается формирование 4p-подуровня. Порядок заполнения подуровней в соответствии с правилами Клечковского можно записать в виде последовательности: 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p. Особенности электронного строения атомов элементов периодической системы Особенности электронного строения атомов элементов в главных и побочных подгруппах, семействах лантаноидов и актиноидов Эффекты экранирования и проникновения За счет экранирования притяжение валентных электронов к ядру ослабевает. Вместе с тем при этом противоположную роль играет проникающая способность к ядру валентных электронов, которая усиливает взаимодействие с ядром. Общий результат притяжения валентных электронов к ядру зависит от относительного вклада в их взаимодействие экранирующего влияния электронов внутренних слоев и проникающей способности валентных электронов к ядру. Периодический характер свойств элементов, связанных со строениями их электронных оболочек Изменение кислотно-основных свойств оксидов и гидроксидов в периодах и группах Кислотные свойства оксидов элементов усиливаются в периодах слева направо и в группах снизу вверх.! Степени окисления элементов Степень окисления (окислительное число, формальный заряд) — вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций, численная величина электрического заряда, приписываемого атому в молекуле в предположении, что электронные пары, осуществляющие связь, полностью смещены в сторону более электроотрицательных атомов. Представления о степени окисления положены в основу классификации и номенклатуры неорганических соединений. Степень окисления соответствует заряду иона или формальному заряду атома в молекуле или в химической формальной единице, например: Степень окисления указывается сверху над символом элемента. В отличие от указания заряда атома, при указании степени окисления первым ставится знак, а потом численное значение, а не наоборот: — степень окисления,
Степень окисления атома в простом веществе равна нулю, например: Алгебраическая сумма степеней окисления атомов в молекуле всегда равна нулю: Понятие степени окисления вполне применимо и для нестехиометрических соединений (КС8, Mo5Si3, Nb3B4 и др.). Например в известной реакции обжига пирита: Суммарная степень окисления атомов в молекуле всегда равна нулю.
|
||||||||||||||||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 3217; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.134.247 (0.006 с.) |