![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
СЛУЧАЙ 1. Выборки независимыеСодержание книги
Поиск на нашем сайте
Предположим, что у нас есть два качественных признака, характеризующие обследованных лиц. Занесем эти данные в таблицу сопряженности 35
Таблица 35. Таблица сопряженности
Критерий хи-квадрат Пирсона вычисляется по формуле
Но для таблицы 2х2 более точные результаты дает критерий с поправкой Йетса
Его критическое значение находится для заданного уровня значимости α и числа степеней свободы f =(n-1)(m-1), где n и m число строк и число столбцов в таблице сопряженности (Приложение 5). Если В случае Когда число наблюдений невелико и в клетках таблицы встречается частота меньше 5, критерий хи-квадрат неприменим и для проверки гипотез используется точный критерий Фишера. Процедура вычисления этого критерия достаточно трудоемка и в этом случае лучше воспользоваться компьютерными программами статанализа. По таблице сопряженности можно вычислить меру связи между двумя качественными признаками – ею является коэффициент ассоциации Юла Q (аналог коэффициента корреляции)
Q лежит в пределах от 0 до 1. Близкий к единице коэффициент свидетельствует о сильной связи между признаками. При равенстве его нулю – связь отсутствует. Аналогично используется коэффициент фи-квадрат (φ2)
Таблицы сопряженности могут иметь и более сложный вид, когда каждый признак имеет более двух градаций. Нулевая гипотеза заключается в отсутствии связи между этими признаками. Ниже приведен пример подобного случая – нужно выяснить есть ли взаимосвязь между профессией и обращаемостью к врачу.
Таблица 38. Таблица сопряженности 3х4
Анализ таких таблиц также предпочтительно проводить с использованием компьютерных программ.
СЛУЧАЙ 2. Выборки зависимые
Над одними и теми же объектами проводятся два наблюдения: «до» и после. (прием лекарства, обучение, внушение и т.д.) Подсчитывается сколько раз данное свойство встречается: • и «до» и «после», (+,+) • только «до» (+,-) • только «после» (-,+) • ни «до» ни «после» (-,-)
Таблица 40. Таблица сопряженности для случая зависимых выборок
Н(0) – частотавстречаемости градаций признака после воздействия фактора не изменилось Критерием для проверки нулевой гипотезы является хи-квадрат Макнемара
Если Если
Контрольное задание 9: По данным из таблицы 42 определите 1. Какова цель проведенного исследования 2. Какой статистический критерий был использован для достижения этой цели. Обоснуйте ответ. 3. Сделайте обоснованный вывод в соответствии с поставленной целью.
Таблица 42. Данные к заданию
Оценка факторов риска Таблица сопряженности часто используется для оценки риска и шансов неблагоприятного исхода в связи с каким-либо фактором (например, риска возникновения рака легких у курящих). Риском называется вероятность возникновения неблагоприятного исхода, и, как всякая вероятность, она принимает значения в интервале от 0 (риск отсутствует) до 1 (неблагоприятный исход наступит наверняка). В качестве неблагоприятного исхода может рассматриваться болезнь, смерть, определенное осложнение, нежелательная беременность и т.д. Относительный риск (ОР) (relative risk)– это отношение частоты события в той части выборки, где фактор действует, к частоте в части выборки, где фактор не действует. Относительный риск показывает силу связи между воздействием и заболеванием.
Таблица 43. Данные по влиянию фактора
Шанс - отношение вероятности того, что событие произойдет, к вероятности того, что событие не произойдет. Интерпретация - если Шанс=1, то вероятность наступления события равна вероятности того, что событие не произойдёт; - если Шанс >1, то вероятность наступления события больше вероятности того, что событие не произойдёт; - если Шанс <1, то вероятность наступления события меньше вероятности того, что событие не произойдёт.
Отношение шансов (ОШ) (odds ratio)- отношение шансов неблагоприятного события в группе, подвергшейся воздействию фактора, к шансам неблагоприятного события в другой группе, или отношение шансов того, что событие произойдет, к шансам того, что событие не произойдет.
Отношение шансов используется для представления результатов мета-анализов и исследований случай-контроль. Значения ОШ от 0 до 1 соответствуют снижению риска неблагоприятного исхода при действии фактора, более 1 - его увеличению. ОШ равное 1 означает отсутствие эффекта от действия фактора.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 380; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.19.209.203 (0.009 с.) |