Тема 4.02. Динамические и статистические теории 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 4.02. Динамические и статистические теории



Вероятность – отношение числа возможных случаев, благоприятствующих данному событию, к числу всех возможных.

Случайность – событие, которое может с определенной долей вероятности произойти, или не произойти.
Статистическая закономерность – законы средних величин, действующие в области массовых явлений, либо при взаимодействии очень большого количества тел.
Среднее значение - числовая характеристика множества чисел или функций; - некоторое число, заключенное между наименьшим и наибольшим из их значений.
Молекулярно-кинетическая теория – теория, основанная на представлении, что все тела состоят из атомов и молекул, находящихся в непрерывном движении и взаимодействии друг с другом.

Распределение (Максвелла) молекул по скоростям:

здесь - вероятность обнаружения молекулы в бесконечно малом прямоугольном параллелепипеде в пространстве скоростей, изображенном на рис. 2.3. Другими словами, это вероятность того, что молекула имеет проекцию скорости на ось х в интервале от vх до vх + dvх и в подобных же интервалах для значений vy и vz.

Рис. 1

В распределении (2.12) А - константа, выражение для которой можно найти из условия нормировки:

Распределение (2.12а) принято называть распределением Максвелла по компонентам скоростей.


Статистическое описание состояния - основывается на применении законов теории вероятностей, а в качестве основной применяемой функции выступает функция распределения. При этом не требуется знания характера соударения микрочастиц, их начальных условий движения и точного решения уравнений динамики всех микрочастиц. В этом случае обычно ограничиваются нахождением функции распределения одной микрочастицы и считают, что функции распределения всех микрочастиц идентичны. Все наблюдаемые параметры макросистемы определяются путем нахождения средних значений динамических переменных микрочастиц.
Флуктуация -случайные отклонения от среднего значения физических величин, характеризующих систему из большого числа частиц; вызываются тепловым движением частиц или квантово механическими эффектами. Примером термодинамических флуктуаций являются флуктуации плотности вещества в окрестностях критических точек, приводящих, в частности, к сильному рассеянию света веществом и потери прозрачности.

Флуктуации, вызванные квантовомеханическими эффектами присутствуют даже при температуре абсолютного нуля. Они принципиально неустранимы.

Квантово механическое состояние - определяется значением энергии системы; минимальное значение энергии называется основное состояние.
Волновая функция – функция состояния системы, являющаяся решением уравнения Шредингера; физического смысла не имеет.
Статистический характер квантового описания природы - в классической механике заданием состояния, в котором находится данная система, однозначно определяются значения всех связанных с нею механических величин, ибо всякая такая величина представляется как функция гамильтоновых переменных, задание значений которых и равносильно заданию состояния системы. В квантовой механике заданием состояния системы механические величины определяются лишь как случайные величины; задание состояния системы определяет собою не значения, а законы распределения связанных с нею механических величин. Эта принципиально статистическая черта квантовой механики.
Динамическая теория – теория изучения сложных динамических систем, которые проявляют признаки хаотического поведения.
Статистическая теория -предсказывает только вероятности разных результатов измерений и ничего не знает о том, как все происходило на самом деле.
Фундаментальная теория
- в современной физике имеют дело не с разрозненной совокупностью множества не связанных или почти не связанных друг с другом законов, а с немногим числом фундаментальных законов или фундаментальных физических теорий, охватывающих огромные области явлений. В этих теориях в наиболее полной и общей форме отражаются объективные процессы в природе.
Примеры фундаментальных динамических теорий: механика, электродинамика, термодинамика, теория относительности, эволюционная теория Ламарка, теория химического строения, молекулярно-кинетическая теория, квантовая механика и другие
квантовые теории, эволюционная теория Дарвина, молекулярная генетика.
Принцип соответствия: статистические и динамические теории – каждая более глубокая теория содержит, при некотором предельном переходе, ранее ей предшествующую, не столь глубокую (например, теория относительности Эйнштейна при малых скоростях переходит в классическую механику Ньютона).
Динамические теории как приближение и упрощение более точных статистических теорий - динамические законы отображают объективные закономерности в форме однозначной количественной связи физических величин, характеризующих причины, условия и следствия.Статистические закономерности обеспечивают более общее описание природы, диалектично отражая роль необходимого и случайного в природе, поэтому динамические законы можно рассматривать как упрощение, первое приближение к анализу различных процессов.

 

Тема 4.03. Корпускулярно-волновой дуализм. Соотношения
неопределенностей

Волновые свойства света:

Интерференция – явление наложения в пространстве однонаправленных когерентных волн, при котором в одних точках пространства волны гасят друг друга, в других – усиливают;

Дифракция – свойство волн огибать препятствия (заходить в область геометрической тени );

Поляризация -выделение некоторого преимущественного направления колебаний в бегущей волне. Такая волна называется поляризованной. Если это световая волна, то при поляризации вектор напряженности электрического поля Е в ней колеблется по определенному закону. Если он колеблется вдоль плоскости проходящей через луч, то такая волна называется плоско или линейно поляризованной.
Корпускулярные свойства света:

Фотоэффект – явление выбивания электронов с поверхности металла при падении на эту поверхность света (внешний фотоэффект). Различают еще и внутренний фотоэффект – это повышение электропроводности полупроводников при падении на них света.
Корпускулярно-волновой дуализм как всеобщее свойство материи - для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна — частица.Корпускулярно-волновой дуализм в современной физике стал всеобщим. Любой материальный объект характеризуется наличием как корпускулярных, так и волновых свойств.
Де Бройль: общая идея и формула связи между импульсом частицы и ее
длиной волны
-де Бройль утверждал, что волновые свойства, наряду с корпускулярными, присущи всем видам материи: электронам, протонам, атомам, молекулам и даже макроскопическим тела, и предложил формулу для длины волны тела массы m: λ = h/mv, где h – постоянная Планка, m – масса тела, v – скорость тела.

Волновые свойства частиц. Дифракция электронов. Электронный микроскоп: Согласно де Бройлю, с каждым микрообъектом связаны, с одной стороны, корпускулярные характеристики – энергия E и импульс p, а с другой стороны, волновые характеристики – частота ν и длина волны λ.

Корпускулярные и волновые характеристики микрообъектов связаны такими же количественными соотношениями, как и у фотона:

 

 

 

Гипотеза де Бройля постулировала эти соотношения для всех микрочастиц, в том числе и для таких, которые обладают массой m. Любой частице, обладающей импульсом, сопоставлялся волновой процесс с длиной волны λ = h / p. Для частиц, имеющих массу,

 

 

английский физик Дж. Томсон (сын Дж. Томсона, открывшего за 30 лет до этого электрон) получил новое подтверждение гипотезы де Бройля. В своих экспериментах Томсон наблюдал дифракционную картину, возникающую при прохождении пучка электронов через тонкую поликристаллическую фольгу из золота. При взаимодействии электронов с такими структурами возникает рассеяние электронов в преимущественных направлениях в соответствии с предсказываемыми теорией соотношениями. Регистрируя рассеянные электроны (например, фотографируя их), можно получать информацию об атомной структуре вещества. Это явление используется в электронных микроскопах.
Мысленный эксперимент - «микроскоп Гейзенберга» - с точки зрения Гейзенберга, чем больше будет уточнено определение положения, тем хуже будет определено состояние движения. Обратно, чем лучше определено состояние движения частицы, тем ближе будет сопряженная волна к плоской монохроматической волне с постоянной амплитудой. Следовательно, чем точнее будет определено состояние движения, тем с меньшей уверенностью может оценить положение частицы.
Соотношение неопределенностей координата-импульс (скорость) – чем точнее определен импульс частицы, тем большая неопределенность в ее координате и наоборот.
Соотношение неопределенностей энергия-время – чем точнее необходимо измерить энергию частицы, тем больший промежуток времени на это потребуется и наоборот, чем меньше времени затрачено на измерение, тем большая неопределенность в определении энергии частицы.
Соотношения неопределенностей как следствие невозможности
невозмущающих измерений
-длительность измерения Т не должна, очевидно, превышать время жизни Δt микрообъекта на данном уровне: Т < Δt.
Соотношения неопределенностей как результат квантовых флуктуаций
- флуктуации, вызванные квантовомеханическими эффектами присутствуют даже при температуре абсолютного нуля. Они принципиально неустранимы. Непосредственно наблюдаемы квантовомеханические флуктуации для заряда, прошедшего через квантовый точечный контакт — квантовый дробовой шум.
Экспериментальные доказательства сложной структуры вакуума: эффект
Казимира, рождение электрон-позитронных пар в электрическом поле
-Что произойдет если Вы возьмете два зеркала и установите их зеркальными сторонами друг к другу в пустом пространстве? Зеркала притягиваются друг к другу из-за того, что между ними находится вакуум. Это явление было впервые предсказано немецким физиком-теоретиком Генрихом Казимиром в 1948 году, когда он работал в исследовательском центре Philips Research Laboratories в Эйндховене (Eindhoven) над коллоидными растворами. Это явление получило название эффекта Казимира, а сила, возникающая между зеркалами - сила Казимира. Законом сохранения импульса запрещено рождение в вакууме реальной электрон-позитронной пары (или пары любых других массивных частиц) одним фотоном, поскольку единичный фотон в любой системе отсчёта несёт конечный импульс, а электрон-позитронная пара в своей системе центра масс обладает нулевым импульсом. Однако виртуальные пары любых частиц могут появляться и в таком процессе; в частности, именно рождение виртуальных пар в вакууме обуславливает такие эффекты, как поляризация вакуума, лэмбовский сдвиг уровней или излучение Хокина. В ускоренной системе отсчёта виртуальная пара может обратиться в реальную.

Тема 4.04. Принцип дополнительности
Корпускулярно-волновой дуализм –
наличие корпукулярных свойств у физических полей и волновых свойств у элементарных частиц.

Принцип дополнительности в квантовой механике – при измерении могут быть установлены, с точностью, допускаемой принципом (соотношением неопределенности Гейзенберга), либо энергия и импульс микрообъекта, либо его пространственные координаты и время (пространственно – временное поведение системы).

Измерение в квантовой механике как результат взаимодействия микрообъекта с макроприбором -невозможность установления твердых границ между объектом и прибором лишает смысла классическое представление об абсолютно фиксированном различии между прибором и объектом.

Невозможность невозмущающих измерений -Квантовый микрообъект проявляется при взаимодействии с классическим прибором. Результат такого взаимодействия — экспериментальные данные, которые объясняются на основе тех или иных теоретических предпосылок и на базе которых, в свою очередь, делаются косвенные заключения о свойствах объекта, уже предсказанных теорией. И так как свойства микрообъекта обнаруживаются через взаимодействие его с классическим прибором, то их проявление обусловливается устройством прибора и создаваемыми внешними условиями
Неотделимость наблюдателя от наблюдаемого объекта -наблюдатель получает информацию не только о физическом объекте как таковом, но одновременно и о влиянии наблюдательного средства на этот объект в процессе измерения.

Возможные значения физических величин: дискретный и непрерывный спектр - в квантовой механике подавляющее число физических величин могут иметь неопpеделенное численное значение. Пеpвое, что необходимо установить, это спектpвозможных значений неопpеделенной величины (он иногда может быть непpеpывным, иногда - дискpетным). Законом распределения дискретной случайной величины называют соответствие между ее возможными значениями и вероятностями их появления. Закон распределения можно задать таблично, аналитически (в виде формулы) и графически (в виде многоугольника распределения). Способ описания распределения случайной величины в виде таблицы, в виде формулы или графически применим только для дискретных случайных величин

 


Физические величины, имеющие и не имеющие определенное значение в данном состоянии -
в квантовой механике разделяют уровень наблюдаемых фактов (результатов измерений и реальных экспериментов) и уровень мысленных экспериментов, которые хотя и не выдают численные значения физических величин, но позволяют понять, что происходит на "самом деле".Для каждого из уровней используются соответствующие физические величины.
Принцип дополнительности в широком смысле как необходимость несовместимых, но взаимодополняющих точек зрения для полного понимания предмета или процесса

Вхождение субъекта в квантовую реальность приводит к распаду физической картины микромира на взаимоисключающие, волновые и корпускулярные стороны. Так как эти описания относятся к одной реальности и реализуют различные свойства одного и того же объекта, то необходимо введение принципа дополнительности, чтобы рассматривать несовместимые стороны как дополняющие друг друга в описании одного и того же бытия.

 

Тема 4.05. Принцип возрастания энтропии

Формы энергии: тепловая, химическая, механическая, электрическая. Энергия – наиболее общая единая мера всех форм движения и взаимодействия материи. Химическая энергия – энергия, выделяющаяся или поглощающаяся в химических реакциях в результате восстановления или разрушения химических связей между атомами и молекулами. Тепловая энергия – энергия хаотического (поступательного, вращательного, колебательного) движения молекул. Механическая энергия – сумма кинетической и потенциальной энергий тела или системы тел. Электрическая энергия – энергия, заключенная в электрическом и магнитном полях, эта энергия переносится в пространстве магнитными волнами.

Первый закон термодинамики - закон сохранения энергии при ее превращениях, или первое начало термодинамики: количество теплоты, сообщенное системераспределяется на увеличение внутренней энергии системы и на совершение работы силами, приложенными со стороны системы к внешним телам.

Замкнутая (изолированная) система и незамкнутая (открытая) система - система, не обменивающаяся с окружающей средой энергией, материей, импульсом, моментом импульса и информацией.
Термодинамическое равновесие. Система в состоянии равновесия характеризуется тем, что в ней не происходит никаких термодинамических процессов, отдельные макроскопические части системы покоятся друг относительно друга, а макроскопические параметры системы (температура, давление) одинаковы для всех частей системы. Достигнув этого состояния, система не может без внешнего воздействия выйти из него.

Второй закон термодинамики как принцип возрастания энтропии в замкнутых системах. В формулировке немецкого физика Клаузиуса (1822 – 1888 г.г.) энтропия замкнутой (изолированной) системы возрастает и достигает максимума в состоянии термодинамического равновесия.

Энтропия как физический индикатор направления времени. Энтропия есть функция состояния системы. Любая изолированная система изменяется в направлении «забывания» начальных условий и перехода в макроскопическое состояние, характеризующимся большими хаосом и симметрией, что соответствует возрастанию энтропии. Таким образом, возрастание энтропии есть некая «стрела времени»: для изолированной системы будущее всегда расположено в направлении возрастания энтропии.

Обратимые и необратимые процессы. Обратимым называется процесс, который может идти как в прямом, так и в обратном направлениях, причем по возвращении системы в исходное состояние не происходит никаких изменений. Любой другой процесс – необратимый. В механистической картине мира рассматриваются только обратимые процессы. Реальные самопроизвольные процессы всегда необратимы.

Энтропия как измеряемая физическая величина (приведенная теплота). Энтропия как функция состояния системы может быть рассчитана как интеграл т своего бесконечно малого приращения, определяемого отношением бесконечно малого количества тепла, полученного или отданного системой при данной температуре к этой температуре (приведенная теплота).

Изменение энтропии тел при теплообмене между ними. Второй закон термодинамики как принцип направленности теплообмена (от горячего к холодному). Согласно Клаузиусу невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому: это означает, что возможны самопроизвольные процессы, протекающие только в одном направлении – передача тепла от более горячих тел к менее горячим, что сопровождается возрастанием энтропии.

Качество (ценность) энергии. Высококачественные формы энергии: механическая, электрическая. Низкокачественная форма энергии: теплота. Качество (ценность энергии) определяется возможностью превращения ее в механическую работу. Так, например, при падении на землю тела, обладавшего кинетической и потенциальной, т.е. механической энергией, выделится тепло, которое не может превратиться вновь в механическую энергию, поэтому тепло рассматривается как энергия более низкого качества, чем энергия механическая, химическая или электрическая.

Понижение качества тепловой энергии с понижением температуры. Поскольку самопроизвольно энергия передается только от тела более нагретого (нагревателя) к менее нагретому (холодильнику), возможность совершения механической работы в этом процессе тем больше, чем выше температура нагревателя по отношению к температуре холодильника, в связи с чем качество тепловой энергии более горячего нагревателя выше, чем у менее горячего.

Энтропия как мера некачественности энергии. Всякое упорядоченное движение и связанная с ним энергия более качественна, чем неупорядоченная энергия, например, энергия теплового хаотического движения молекул. Поскольку энтропия есть мера хаоса, т.е. беспорядка в системе, а ее увеличение соответствует росту этого беспорядка, можно сказать, что энтропия есть мера некачественности энергии.

Второй закон термодинамики как принцип неизбежного понижения качества энергии. Увеличение беспорядка, т.е. возрастание энтропии в изолированных системах, неизбежное в соответствии со вторым началом термодинамики, есть принцип неизбежного понижения качества энергии. В изолированных системах происходит своего рода обесценивание энергии: все виды энергии в конечном счете превращаются в тепловую энергию, которая сама по себе не может не может превратиться в механическую энергию.

Энтропия как мера молекулярного беспорядка. Благодаря работам великого австрийского физика Больцмана понятие энтропии удалось свести с макроскопического на микроскопический уровень. По Больцману энтропия пропорциональна логарифму термодинамической вероятности, которая определяется как число микросостояний системы, которыми реализуется данное макросостояние системы. Очевидно, что чем больше упорядоченность в распределении элементов, образующих систему, тем меньшим числом микросостояний может быть реализовано данное макростостояние. Например, равномерному распределению молекул газа в объеме соответствует максимальное число возможных комбинаций, т.е перестановок этих молекул, не изменяющих равномерности их распределения.

Статистическая природа второго начала термодинамики. В соответствии с определением энтропии по Больцману второе начало термодинамики можно сформулировать следующим образом: энтропия изолированной системы при протекании необратимых процессов возрастает, ибо система, предоставленная самой себе, переходит из менее вероятного состояния в более вероятное. Энтропия системы в состоянии равновесия максимально и постоянно.

Второй закон термодинамики как принцип нарастания беспорядка и разрушения структур. Разрушение существующих структур – одна из форм нарастания беспорядка в системе, т.е. проявление принципа нарастания беспорядка.

Энтропия как мера отсутствия информации. Обмен информацией (в самом широком смысле – сведениями, передаваемыми от одних объектов к другим) современной наукой рассматривается как одно из условий открытости сложных систем. В отсутствие информации извне управление системой, что тождественно поддержанию или усилению порядка в системе, невозможно, поэтому отсутствие или дефицит информации приводит к возрастанию энтропии в системе.

Основной парадокс эволюционной картины мира: закономерность эволюции на фоне всеобщего роста энтропии. Энтропия открытой системы: производство энтропии в системе, входящий и выходящий потоки энтропии. Термодинамика жизни: добывание упорядоченности из окружающей среды. Термодинамика Земли как открытой системы. Рассматривая Землю как изолированную систему, что изначально неверно, можно предположить, что в этой системе возможны только процессы деградации, застоя и нарастания хаоса. В тоже время, очевидны процессы эволюции живой природы, а также прогресс цивилизации. Разрешение этого парадокса следует из рассмотрения земной системы как системы сложной, состоящей из отдельных, но взаимодействующих подсистем: живая природа – неживая природа, человек – окружающая среда и т.п. В такой сложной системе уменьшение энтропии, т.е. беспорядка в одной подсистеме может происходить за счет увеличения энтропии в другой подсистеме. Вся картина усложняется при учете того обстоятельства, что человек, природа, вся планета Земля являются частью космоса и в этом смысле Земля – открытая система, все взаимодействия которой с внешним миром еще не полностью изучены.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 976; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.89.163.120 (0.041 с.)