Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тема 5.02. Космогония. Геологическая эволюцияСодержание книги
Поиск на нашем сайте
Космогония (греч. kosmogonía, от kósmos — мир, Вселенная и gone, goneia — рождение), область науки, в которой изучается происхождение и развитие космических тел и их систем: звёзд и звёздных скоплений, галактик, туманностей, Солнечной системы и всех входящих в неё тел — Солнца, планет (включая Землю), их спутников, астероидов (или малых планет), комет, метеоритов.
Эргодическая гипотеза (от греч. érgon — работа и hodós — путь) в статистической физике, состоит в предположении, что средние по времени значения физических величин, характеризующих систему, равны их средним статистическим значениям. Состояние некоторой физической системы определяется импульсами и координатами составляющих ее тел или частиц, т. е. 6 N величинами (N — число частиц или тел). Возможные состояния системы удобно представлять себе как точки 6 N -мерного пространства — фазового пространства, а ее эволюцию с течением времени — как некоторое движение (траекторию) в этом пространстве.
Звёзды, самосветящиеся небесные тела, состоящие из раскалённых газов, по своей природе сходные с Солнцем. Солнце кажется несравненно больше звезды только благодаря близости его к Земле: от Солнца до Земли свет идёт 81/3 мин, а от ближайшей звезды Центавра — 4 года 3 мес. Основные характеристики звезд — масса, радиус (не считая внешних прозрачных слоев), светимость (полное количество излучаемой энергии), эти величины часто выражаются в долях массы, радиуса и светимости Солнца. Кроме основных параметров, употребляются их производные: эффективная температура, спектральный класс, характеризующий степень ионизации и возбуждения атомов в атмосфере звезды, абсолютная звёздная величина (т. е. звёздная величина, которую имела бы звезда на стандартном расстоянии 10 парсек); показатель цвета (разность звёздных величин, определённых в двух разных спектральных областях). В состав нашей Галактики к которой принадлежит Солнце входит более 100 млрд. звезд.
Распределение звезд по спектрам и светимостям. Массы звезд заключены в пределах от 0,04 до 100 масс Солнца, светимости от 510-4 до 105 светимостей Солнца, радиусы от 210-1 до 103 радиусов Солнца. Эти параметры связаны определёнными зависимостями. Наиболее важные из них выявляются на диаграммах «спектр — светимость» (Герцшпрунга — Ресселла диаграммах) или «эффективная температура — светимость»
Диаграмма Герцшпрунга — Ресселла. Большинство звезд расположено на главной последовательности (V класс светимости). Левый её конец образуют звезды класса О с температурами 30 000—50 000°, правый — красные звёзды-карлики класса М с температурами 3000—4000°. На диаграмме видна последовательность гигантов (III класс), в которую входят звезды высокой светимости (т. е. имеющие большие радиусы). Выше расположены последовательности ещё более ярких сверхгигантов Ia, Iв и II. (Принадлежность звезды к числу карликов, гигантов и сверхгигантов обозначалась ранее буквами d, g и с перед спектральным классом.) Внизу диаграммы расположены белые карлики (VII), размеры которых сравнимы с размерами Земли при плотности порядка 106 г/см3. Кроме этих основных последовательностей, отмечаются субгиганты (IV) и субкарлики (VI). Спектры звезд. Основным критерием в этой классификации принята интенсивность атомных спектральных линий или молекулярных полос; одновременно грубо учитывается распределение энергии в непрерывном спектре звезды. Гарвардская Спектральная классификация звезд основанна на эмпирических данных, является температурной классификацией. Спектральные классы имеют буквенные обозначения и располагаются в последовательности: соответствующей убыванию температуры; ответвления выражают различия химического состава. Переходы между классами непрерывны, внутри классов вводятся десятичные подразделения, например В0, В1, В2,..., В9, А0,..., причём каждый последующий класс или его подразделение называется более поздним по отношению к предыдущему. 99% всех звёзд принадлежат к спектральным классам В — М. Звёзды классов О, R, N, S редки. Класс О (температура» 50000—30000 К). Класс В (t» 30000—12000 К). Класс А (t» 11500—7700К), Класс F (t» 7600—6100 К). Класс G (t» 6000—5000К). Класс К (t» 4900—3700 К). Класс М (t» 3600 — 2600 К). Клacc R (t» 5000—4000 К). Класс N (t» 3000—2000 К). Класс S (t»3000—2000 К). Источники звёздной энергии и эволюция звёзд. Основным источником энергии звезд являются термоядерные реакции, при которых из лёгких ядер образуются более тяжёлые чаще всего это — превращение водорода в гелий.
Солнце, центральное тело Солнечной системы, представляет собой раскалённый плазменный шар; Солнце — ближайшая к Земле звезда. Масса Солнца 1,990 1030 кг (в 332 958 раз больше массы Земли). В Солнце сосредоточено 99,866% массы Солнечной системы.
Внутреннее строение Солнца. Полагают, что содержание водорода в Солнца по массе около 70%, гелия около 27%, содержание всех остальных элементов около 2,5%. На основании этих предположений вычислено, что температура в центре Солнца составляет 10—15106К, плотность около 1,5 • 105 кг / м 3,давление 3,4 • 1016 н / м 2 (около 3 • 1011 атмосфер). Считается, что источником энергии, пополняющим потери на излучение и поддерживающим высокую температуру Солнца, являются ядерные реакции, происходящие в недрах Солнца при которых водород превращается в гелий.
Солнечная активность, совокупность явлений, наблюдаемых на Солнце и связанных с образованием солнечных пятен, факелов, флоккулов, волокон, протуберанцев, возникновением солнечных вспышек, возмущений в солнечной короне, увеличением ультрафиолетового, рентгеновского и корпускулярного излучения и др. Интенсивность явлений Солнечной активности характеризуют условными индексами — относительным числом солнечных пятен, площадью пятен, площадью и яркостью факелов, флоккулов, волокон и протуберанцев. Средняя годовая величина таких индексов изменяется периодически со средним периодом около 11 лет (период колеблется от 7,5 до 16 лет). Величина максимума 11-летнего цикла изменяется с периодом около 80 лет.
Солнечный ветер, представляет собой постоянное радиальное истечение плазмы солнечной короны в межпланетное пространство. Образование Солнечного ветра связано с потоком энергии, поступающим в корону из более глубоких слоев Солнца. По-видимому, переносят энергию магнитогидродинамические и слабые ударные волны. Для поддержания Солнечного ветра существенно, чтобы энергия, переносимая волнами и теплопроводностью, передавалась и верхним слоям короны. Постоянный нагрев короны, имеющей температуру 1,5—2 млн. градусов, не уравновешивается потерей энергии за счёт излучения, т.к. плотность короны мала. Избыточную энергию уносят частицы Солнечного ветра. По существу Солнечный ветер — это непрерывно расширяющаяся солнечная корона.
Солнечный магнетизм, совокупность явлений, связанных с существованием на Солнце магнитного поля. Различают магнитные поля солнечных пятен, активных областей вне пятен и т. н. общее магнитное поле Солнца. Впервые магнитное поле на Солнце было открыто американским астрономом Дж. Хейлом в 1908 по расщеплению линий поглощения (эффект Зеемана) в спектрах пятен.
Возраст Солнца — около 5109 лет. Солнце как звезда является типичным жёлтым карликом. Период обращения Солнца вокруг центра Галактики около 200 млн. лет.
Гипотеза Шмидта в астрономии, космогоническая гипотеза, главной частью которой является предположение об образовании планет путём объединения холодных твёрдых тел различных размеров, обращавшихся вокруг Солнца. Разработана в 1943 О. Ю. Шмидтом на основе критического изучения истории планетной космогонии и анализа закономерностей движения планет.
Земля имеет сложную форму, определяемую совместным действием гравитации, центробежных сил, вызванных осевым вращением Земли, а также совокупностью внутренних и внешних рельефообразующих сил. Приближённо в качестве формы (фигуры) Земли принимают уровенную поверхность гравитационного потенциала т. е. поверхность, во всех точках перпендикулярную к направлению отвеса, совпадающую с поверхностью воды в океанах при отсутствии волн, приливов, течений и возмущений, вызванных изменением атмосферного давления. Эту поверхность называют геоидом. Для решения многих научных и практических задач геодезии, картографии и др. в качестве формы Земли. принимают земной эллипсоид. Магнитосфера. Самой внешней и протяжённой оболочкой Земли является магнитосфера — область околоземного пространства, физические свойства которой определяются магнитным полем Земли. и его взаимодействием с потоками заряженных частиц.
Земной магнетизм обусловлен действием постоянных источников, расположенных внутри Земли и испытывающих лишь медленные вековые изменения (вариации), и внешних (переменных) источников, расположенных в магнитосфере Земли и ионосфере. Соответственно различают основное (главное, ~99%) и переменное (~1%) геомагнитные поля. Для объяснения происхождения основного геомагнитного поля выдвигалось много различных гипотез. Современные данные о вековых вариациях и многократных изменениях полярности геомагнитного поля удовлетворительно объясняются только гипотезой о гидромагнитном динамо (ГД). Согласно этой гипотезе, в электропроводящем жидком ядре Земли могут происходить достаточно сложные и интенсивные движения, приводящие к самовозбуждению магнитного поля, аналогично тому, как происходит генерация тока и магнитного поля в динамо-машине с самовозбуждением. Действие ГД основано на электромагнитной индукции в движущейся среде, которая в своём движении пересекает силовые линии магнитного поля. Магнитосфера Земли
Земной магнетизм
Строение «твёрдой» Земли. Верхняя сфера «твёрдой» Земли — земная кора (А) — самая неоднородная и сложно построенная. Из нескольких типов земной коры преобладающее распространение имеют материковая и океаническая; в строении первой различают три слоя: верхний — осадочный (от 0 до 20 км), средний, называемый условно «гранитным» (от 10 до 40 км), и нижний, т. н. «базальтовый» (от 10 до 70 км), отделяющийся от «гранитного» поверхностью Конрада. Строение Земли Мантия состоит из трёх слоев (В, С и D) и простирается от поверхности Мохоровичича до глубины 2900 км, где она граничит с ядром З. Слои В и С образуют верхнюю мантию (толщиной 850—900 км), слой D — нижнюю мантию (около 2000 км). Верхнюю часть слоя В, залегающую непосредственно под корой, называется субстратом; кора вместе с субстратом составляет литосферу. Земное ядро имеет средний радиус около 3,5 тыс. км и делится на внешнее ядро (слой Е) и субъядро (слой G) с радиусом около 1,3 тыс. км. Их разделяет переходная зона (слой F) толщиной около 300 км, которую относят обычно к внешнему ядру. Сейсмическая разведка, сейсморазведка, методы разведочной геофизики, основанные на изучении особенностей распространения упругих (сейсмических) волн в земной коре, с целью исследования её геологического строения. Для сейсморазведки применяют методы отражённых и преломленных волн и пьезоэлектрического эффекта. Электрическое поле Земли, естественное электрическое поле, Земли как планеты, наблюдается в твёрдом теле Земли, в морях, в атмосфере и магнитосфере. Электрическое поле Земли обусловлено сложным комплексом геофизических явлений. Существование электрического поля в атмосфере Земли связано в основном с процессами ионизации воздуха и пространственным разделением возникающих при ионизации положительных и отрицательных электрических зарядов, что приводит к возникновению токов,разряжающих электрический «конденсатор» атмосфера — Земля. Электрические поля в ионосфере обусловлены процессами, протекающими как в верхних слоях атмосферы, так и в магнитосфере. Приливные движения воздушный масс, ветры, турбулентность — всё это является источником генерации электрического поля в ионосфере благодаря эффекту гидромагнитного динамо. Формирование Земли. Согласно современным космогоническим представлениям, Земля образовалась ~4,5 млрд. лет назад путём гравитационной конденсации из рассеянного в околосолнечном пространстве газо-пылевого вещества, содержащего все известные в природе химические элементы. Формирование Земли сопровождалось дифференциацией вещества, которой способствовал постепенный разогрев земных недр, в основном за счёт теплоты, выделявшейся при распаде радиоактивных элементов (урана, тория, калия и др.). Океан — непрерывная водная оболочка Земли, окружающая материки и острова и обладающая общностью солевого состава. Составляет большую часть гидросферы (94%) и занимает около 70,8% земной поверхности. В понятие океан часто включают подстилающие массу его вод земную кору и мантию.
В геохимической истории возникновения океана многие исследователи различают три стадии развития: начальную, переходную и современную. С начальной — гипотетической стадией, охватывающей догеологический этап (приблизительно до 3,5 млрд. лет назад), связан вынос из недр Земли основных массы воды и кислых продуктов дегазации (Cl, F, Br, I, S и др.), которые затем нейтрализовались, взаимодействуя с породами ложа океана. Переходная стадия, охватывающая, вероятно, около 2 млрд. лет (3,5—1,7 млрд. лет назад), ознаменовалась возникновением и развитием жизни, появлением и постепенным ростом содержания фотосинтетического кислорода в атмосфере, окислением восстановленной серы и др. поливалентных элементов. Современная стадия, начавшаяся, по-видимому, на рубеже раннего и позднего протерозоя (около 1,7 млрд. лет назад) и продолжающаяся до сих пор, характеризуется составом вод океана и газов атмосферы, близким к современному, стационарным режимом с кратковременными и ограниченными колебаниями солёности мор. воды в эпохи соленакопления (кембрий, девон, пермь). Под влиянием процессов, идущих в океанической воде, формируются осадки дна. Океаническая вода проникает в эти осадки на заметную глубину. Захороненная вода океанических осадков дна, её состав подвергаются изменению
Атмосферой, или воздушной оболочкой Земли, называют газовую среду, окружающую «твёрдую» Землю и вращающуюся вместе с ней. Масса атмосферы составляет ~5,15·1018 кг. Среднее давление атмосферы на поверхность Земли на уровне моря. Равно 101 325 н/м2 (это соответствует 1 атмосфере или 760 мм рт. ст.). Плотность и давление атмосферы быстро убывают с высотой, у поверхности Земли средняя плотность воздуха r = 1,22 кг/м3 (число молекул в 1 м3 n = 2,55·1025), на высоте 10 км (= 0,41 кг/м3 (n = 8,6·1024), а на высоте 100 км r=8,8(10-7 кг/м3 (n=1,8·1018). Атмосфера имеет слоистое строение, слои различаются своими физическими и химическими свойствами (температурой, химическим составом, ионизацией молекул и др.). Химический состав земной атмосферы неоднороден. Сухой атмосферный воздух у поверхности Земли содержит по объёму 78,08% азота,20,95% кислорода (~ 10-6% озона), 0,93% аргона и около 0,03% углекислого газа. Не более 0,1% составляют вместе водород, неон, гелий, метан, криптон и др. газы. Атмосферная оптика, раздел физики атмосферы, в котором изучаются оптические явления, возникающие при прохождении света в атмосфере. Сюда относятся не только такие красочные явления, как зори, радуги, изменения цвета неба, а и менее заметные, но очень важные для практики явления, как рассеяние и излучение атмосферой видимой и невидимой радиации, поляризация небесного света, видимость предметов и т.д. А. о. составляет часть физической оптики; она тесно переплетается с оптикой коллоидов и аэрозолей, планетных атмосфер, моря, с радиационной теплопередачей и др. Важные для атмосфернай оптики результаты были получены при решении проблем физической химии, астрофизики, океанологии, техники, а методы и результаты Атмосферная оптика часто находят применение в этих науках. Климат (от греч. klíma, родительный падеж klímatos, буквально — наклон; подразумевается наклон земной поверхности к солнечным лучам), многолетний режим погоды, свойственный той или иной местности на Земле и являющийся одной из ее географических характеристик. Теплооборот слагается из притока к Земле электромагнитной солнечной радиации, лучистая энергия которой при поглощении радиации в атмосфере и на земной поверхности переходит в теплоту; из обмена теплотой между атмосферой и земной поверхностью путем длинноволнового излучения, теплопроводности и фазовых преобразований воды (затраты теплоты почвой и водоемами на испарение воды и освобождение скрытой теплоты испарения при конденсации в атмосфере); из перераспределения теплоты на Земле путём переноса её воздушными и океаническими течениями; из отдачи как отражённой и рассеянной солнечной радиации, так и собственного длинноволнового излучения Земли и атмосферы в космическое пространство. Влагооборот заключается в испарении воды в атмосферу с водоёмов и суши, включая и транспирацию растений; в переносе водяного пара в высокие слои атмосферы, а также воздушными течениями общей циркуляции атмосферы; в конденсации водяного пара в виде облаков и туманов; в переносе облаков воздушными течениями и в выпадении из них осадков; в стоке выпавших осадков и в новом их испарении, и т.д. Общая циркуляция атмосферы создаёт в основном режим ветра. С переносом воздушных масс общей циркуляцией связан глобальный перенос теплоты и влаги, Местные атмосферные циркуляции (бризы, горно-долинные ветры и пр.) создают перенос воздуха лишь над ограниченными районами земной поверхности, налагающийся на общую циркуляцию и влияющий на климатические условия в этих районах. Гидросфера (от гидро... и сфера), прерывистая водная оболочка Земли, располагающаяся между атмосферой и твёрдой земной корой (литосферой) и представляющая собой совокупность океанов, морей и поверхностных вод суши. В более широком смысле в состав гидросферы включают также подземные воды, лёд и снег Арктики и Антарктики, а также атмосферную воду и воду, содержащуюся в живых организмах. Основная масса воды гидросферы сосредоточена в морях и океанах, второе место по объёму водных масс занимают подземные воды, третье — лёд и снег арктических и антарктических областей.
Биосфера (от био... и сфера), оболочка Земли, состав, структура и энергетика которой в существенных чертах обусловлены прошлой или современной деятельностью живых организмов. Биосфера охватывает часть атмосферы, гидросферу и верхнюю часть литосферы, которые взаимосвязаны сложными биогеохимическими циклами миграции веществ и энергии. Биосфера включает не только область жизни (биогеосферу, фитогеосферу, геомериду, витасферу), но и другие структуры Земли, генетически связанные с живым веществом. По Вернадскому, вещество биосферы состоит из семи разнообразных, но геологически взаимосвязанных частей: живое вещество; биогенное вещество; косное вещество; биокосное вещество; радиоактивное вещество; рассеянные атомы; вещество космического происхождения. В пределах биосферы везде встречается либо живое вещество, либо следы его биогеохимической деятельности. Газы атмосферы (кислород, азот, углекислота), природные воды, равно как и каустобиолиты (нефти, угли), известняки, глины и их метаморфические производные (сланцы, мраморы, граниты и др.) в своей основе созданы живым веществом планеты. Слои земной коры, лишённые в настоящее время живого вещества, но переработанные им в геологическом прошлом, Вернадский относил к области «былых биосфер».
|
||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 475; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.19.115 (0.014 с.) |