Основные марки улучшаемых конструкционных сталей.




ЗНАЕТЕ ЛИ ВЫ?

Основные марки улучшаемых конструкционных сталей.



I углеродистые стали ГОСТ 1050-74 II малолегированные стали ГОСТ 4543-71 III среднелегированные стали ГОСТ ГОСТ 4543-71
30, 35 30Г, 50Г, 60Г, 65Г 38ХН3А
40, 45 30Х, 40Х 38Х2МЮА
50, 55 30ХМ, 40ХМ 40ХН2МА
60, 65 50Г2, 50ХФА 38ХН3МФА
  30ХГСА, 40ХМФА 45ХН2МФА

47. Пружины, рессоры и другие упругие элементы являются важнейшими деталями различных машин и механизмов. В работе они испытывают многократные переменные нагрузки Основные требования к пружинным сталям – обеспечение высоких значений пределов упругости, текучести, выносливости, а также необходимой пластичности и сопротивления хрупкому разрушению, стойкости к релаксации напряжений самопроизвольное снижение напряжений при постоянной суммарной деформации.

Пружины изготавливаются из углеродистых (65, 70) и легированных конструкционных сталей. Для упрочнения пружинных углеродистых сталей применяют холодную пластическую. Пружинные стали легируют элементами, которые повышают предел упругости – кремнием, марганцем, хромом, вольфрамом, ванадием, бором. В целях повышения усталостной прочности не допускается обезуглероживание при нагреве под закалку и требуется высокое качество поверхности. Пружины и другие элементы специального назначения изготавливают из высокохромистых мартенситных, аустенитных нержавеющих, аустенито-мартенситных, быстрорежущих (Р18) и других сталей и сплавов. 60С2, 50ХГС, 60С2ХФА, 55ХГР рессорные

ШарикоподшипникиПодвергаются воздействию высоких нагрузок переменного характера. Основными требованиями являются высокая прочность и износостойкость, высокий предел выносливости, отсутствие концентраторов напряжений, неметаллических включений, полостей, ликваций. Шарикоподшипниковые стали характеризуются высоким содержанием углерода (около 1 %) и наличием хрома (ШХ9, ШХ15). Высокое содержание углерода и хрома после закалки обеспечивает структуру мартенсит плюс карбиды, высокой твердости, износостойкости, необходимой прокаливаемости. Дальнейшее увеличение прокаливаемости достигается дополнительным легированием марганцем, кремнием (ШХ15СГ). Повышены требования в отношении чистоты и равномерности распределения карбидов, в противном случае может произойти выкрашивание. Стали подвергаются строгому металлургическому контролю на наличие пористости, неметаллических включений, карбидной сетки, карбидной ликвации. Термическая обработка включает отжиг, закалку и отпуск. Отжиг проводят после ковки для снижения твердости и подготовки структуры к закалке. Температура закалки составляет 790…880 oС в зависимости от массивности деталей. Охлаждение – в масле (кольца, ролики), в водном растворе соды или соли (шарики). Отпуск стали проводят при температуре 150…170oС в течение 1…2 часов. Обеспечивается твердость 62…66 НRC. Из стали ШХ9 изготавливают шарики и ролики небольших размеров, из стали ШХ15 – более крупные. Детали подшипников качения, испытывающие большие динамические нагрузки (подшипники прокатных станов), изготавливают из сталей 20Х2Н4А и 18ХГТ с последующей глубокой цементацией на глубину 5…10 мм. Для деталей подшипников, работающих в азотной кислоте и других агрессивных средах, используется сталь 95Х18.

48. Режущая сталь должна обладать высокой твердостью, износостойкостью, достаточной прочностью и вязкостью (для инструментов ударного действия).Режущие кромки могут нагреваться до температуры 500…900oС, поэтому важным свойством является теплостойкость, т. е., cпособность сохранять высокую твердость и режущую способность при продолжительном нагреве (красностойкость). Стали содержат 0,7…1,5 % углерода, до 18 % основного легирующего элемента – вольфрама, до 5 % хрома и молибдена, до 10 % кобальта. Микроструктура быстрорежущей стали в литом состоянии имеет эвтектическую структурную составляющую. Для получения оптимальных свойств инструментов из быстрорежущей стали необходимо по возможности устранить структурную неоднородность стали – карбидную ликвацию. Для этого слитки из быстрорежущей стали подвергаются интенсивной пластической деформации (ковке). Охлаждение от закалочной температуры производится в масле. Структура стали после закалки состоит из легированного, очень тонкодисперсного мартенсита, значительного количества (30…40 %) остаточного аустенита и карбидов вольфрама. При термической обработке быстрорежущих сталей применяют обработку холодом. Основными видами режущих инструментов из быстрорежущей стали являются резцы, сверла, долбяки, протяжки, метчики машинные, ножи для резки бумаги. Часто из быстрорежущей стали изготавливают только рабочую часть инструмента.

 

У7; У8; У8Г; У9; У10; У11; У12; У13; У7А; У8А; У8ГА; У9А; У10А; У11А; У12А; У13А.

 

Стали для измерительного инструмента

Основными требованиями, предъявляемыми к сталям, из которых изготавливаются измерительные инструменты, являются высокая твердость и износоустойчивость, стабильность в размерах в течение длительного времени. Последнее требование обеспечивается минимальным температурным коэффициентом линейного расширения и сведением к минимуму структурных превращений во времени.

высокоуглеродистые инструментальные стали, легированные и углеродистые (стали У12, Х, Х9, ХГ) малоуглеродистые стали (сталь 15, 20) после цементации и закалки с низким отпуском;

Различают стали для штампов холодного и горячего деформирования. Стали должны обладать высокой твердостью, износостойкостью, прочностью, вязкостью (чтобы воспринимать ударные нагрузки), сопротивлением пластическим деформациям. Для штампов небольших размеров (до 25 мм) используют углеродистые инструментальные стали У10, У11, У12 после закалки и низкого отпуска на твердость 57…59 HRC. Это позволяет получить хорошую износостойкость и ударную вязкость. Если штамповый инструмент испытывает ударные нагрузки, то используют стали, обладающие большей вязкостью. Это достигается снижением содержания углерода, введением легирующих элементов и соответствующей термической обработкой.

 

 

У7; У8; У8Г; У9; У10; У11; У12; У13; У7А; У8А; У8ГА; У9А; У10А; У11А; У12А; У13А.

 

50. Твёрдые сплавы для режущего инструмента В качестве материалов для инструментов используются твердые сплавы, которые состоят из твердых карбидов и связующей фазы. Они изготавливаются методами порошковой металлургии. Твердость и прочность зависят от величины зерен карбидов. Чем крупнее зерна карбидов, тем выше прочность. Твердые сплавы отличаются большой износостойкостью и теплостойкостью. Наиболее распространенными сплавами являются сплавы марок ВК3, ВК6, ВК8, ВК20, где число показывает содержание кобальта в процентах, остальное – карбиды вольфрама WC. Сплавы группы ТК марок Т30К6, Т14К8 – первое число показывает содержание карбидов титана в процентах, второе – содержание кобальта в процентах. Сплавы этой группы лучше противостоят изнашиванию, обладают большей твердостью, тепло- и жаростойкостью, стойкостью к коррозии, но меньшей теплопроводностью и большей хрупкостью. Используются на средних и высоких скоростях резания.

Коррозия и меры борьбы

Разрушение металла под воздействием окружающей среды называют коррозией. Коррозия в зависимости от характера окружающей среды может быть химической и электрохимической. Электрохимическая коррозия имеет место в водных растворах, а так же в обыкновенной атмосфере, где имеется влага. Химическая коррозия может происходить за счет взаимодействия металла с газовой средой при отсутствии влаги.

Деталь, подвергаемая хромированию, как правило, проходит через следующие шаги:

· Очистка для удаления сильных загрязнений.

· Тонкая очистка, для удаления следов загрязнений.

· Предварительная подготовка (варьируется в зависимости от материала основы).

· Помещение в ванну с насыщенным раствором и выравнивание температуры.

· Подключение тока и выдержка до получения нужной толщины

Используемые при хромировании реагенты и отходы процесса чрезвычайно токсичны, в большинстве стран этот процесс находится под строгим регулированием

Содержание хрома должно быть не менее 13% (13…18%).

Коррозионная стойкость объясняется образованием на поверхности защитной пленки оксида .

Углерод в нержавеющих сталях является нежелательным, так как он обедняет раствор хрома, связывая его в карбиды. Чем ниже содержание углерода, тем выше коррозионная стойкость нержавеющих сталей. Различают стали ферритного класса 08Х13, 12Х17, 08Х25Т, 15Х28. Термическую обработку для ферритных сталей проводят для получения структуры более однородного твердого раствора, что увеличивает коррозионную стойкость. Стали мартенситного класса 20Х13, 30Х13, 40Х13. После закалки и отпуска при 180…250oС стали 30Х13, 40Х13 имеют твердость 50…60 HRC и используются для изготовления режущего инструмента (хирургического), пружин для работы при температуре 400…450o. Стали аустенитного класса – высоколегированные хромоникелевые стали. Нержавеющие стали аустенитного класса 04Х18Н10, 12Х18Н9Т имеют более высокую коррозионную стойкость, лучшие технологические свойства по сравнению с хромистыми нержавеющими сталями, лучше свариваются. Они сохраняют прочность до более высоких температур, менее склонны к росту зерна при нагреве и не теряют пластичности при низких температурах. Упрочняют аустенитные стали холодной пластической деформацией, что вызывает эффект наклепа.

 

52. Под жаростойкостью (окалиностойкость) понимают сопротивление металла окислению в газовой среде при температурах выше 550°С. Для этого сталь легируют Cr, Al, Si, которые создают на поверхности оксидные пленки Cr2O3, Al2O3, SiO2 и др. Это сильхромы, хромали, сильхромали.

Жаропрочные стали работают при высоких температурах под нагрузкой в течение заданного промежутка времени. Жаропрочные стали перлитного класса (12Х1МФ, 12Х1М1Ф, 20Х1М1Ф1БРА и др.) применяются для изготовления деталей паровых турбин, котлов. V и Nb измельчают зерно, Cr придает жаростойкость и жаропрочность.

В качестве современных жаропрочных материалов можно отметить перлитные, мартенситные и аустенитные жаропрочные стали, никелевые и кобальтоавые жаропрочные сплавы, тугоплавкие металлы.

При температурах до 300oC обычные конструкционные стали имеют высокую прочность, нет необходимости использовать высоколегированные стали.

Для работы в интервале температур 350…500oC применяют легированные стали перлитного, ферритного и мартенситного классов.

 

 

53. Алюминий – легкий металл с плотностью 2,7 г/см3 и температурой плавления 660oС. Имеет гранецентрированную кубическую решетку. Обладает высокой тепло- и электропроводностью. Химически активен, но образующаяся плотная пленка оксида алюминия Al2O3, предохраняет его от коррозии. Механические свойства: предел прочности 150 МПа, относительное удлинение 50 %, модуль упругости 7000 МПа. Алюминий высокой чистоты маркируется А99 (99,999 % Al). Технический алюминий хорошо сваривается, имеет высокую пластичность. Из него изготавливают строительные конструкции, малонагруженные детали машин, используют в качестве электротехнического материала для кабелей, проводов.

Принцип маркировки алюминиевых сплавов. В начале указывается тип сплава: Д – сплавы типа дюралюминов; А – технический алюминий; АК – ковкие алюминиевые сплавы; В – высокопрочные сплавы; АЛ – литейные сплавы. Далее указывается условный номер сплава. За условным номером следует обозначение, характеризующее состояние сплава: М – мягкий (отожженный); Т – термически обработанный (закалка плюс старение); Н – нагартованный; П – полунагартованный

По технологическим свойствам сплавы подразделяются на три группы:

· деформируемые сплавы, не упрочняемые термической обработкой Прочность алюминия можно повысить легированием. В сплавы, не упрочняемые термической обработкой, вводят марганец или магний. Атомы этих элементов существенно повышают его прочность, снижая пластичность. Обозначаются сплавы: с марганцем – АМц, с магнием – АМг; после обозначения элемента указывается его содержание (АМг3).

Магний действует только как упрочнитель, марганец упрочняет и повышает коррозионную стойкость. Эти сплавы применяют для изготовления различных сварных емкостей для горючего, азотной и других кислот, мало- и средненагруженных конструкций.

· деформируемые сплавы, упрочняемые термической обработкой К таким сплавам относятся дюралюмины ( сложные сплавы систем алюминий – медь –магний или алюминий – медь – магний – цинк). Они имеют пониженную коррозионную стойкость, для повышения которой вводится марганец. Изготавливают поршни, лопатки и диски осевых компрессоров, турбореактивных двигателей. ;

· литейные сплавы. К литейным сплавам относятся сплавы системы алюминий – кремний (силумины), содержащие 10…13 % кремния.

Литейные сплавы маркируются от АЛ2 до АЛ20. Силумины широко применяют для изготовления литых деталей приборов и других средне- и малонагруженных деталей, в том числе тонкостенных отливок сложной формы.

 

 

Медь и её сплавы

Цветные металлы являются более дорогими и дефицитными по сравнению с черными металлами, однако область их применения в технике непрерывно расширяется. Это сплавы на основе титана, алюминия, магния, меди. Медь имеет гранецентрированную кубическую решетку. Плотность меди 8,94 г/см3, температура плавления 1083oС. Характерным свойством меди является ее высокая электропроводность, поэтому она находит широкое применение в электротехнике. Технически чистая медь маркируется: М00 (99,99 % Cu), М0 (99,95 % Cu), М2, М3 и М4 (99 % Cu).Повышение механических свойств достигается созданием различных сплавов на основе меди. Различают две группы медных сплавов: латуни – сплавы меди с цинком, бронзы – сплавы меди с другими (кроме цинка) элементами. Латуни могут иметь в своем составе до 45 % цинка. Повышение содержания цинка до 45 % приводит к увеличению предела прочности до 450 МПа. Максимальная пластичность имеет место при содержании цинка около 37 %.Латуни имеют хорошую коррозионную стойкость, которую можно повысить дополнительно присадкой олова..Литейные латуни также маркируются буквой Л, После буквенного обозначения основного легирующего элемента (цинк) и каждого последующего ставится цифра, указывающая его усредненное содержание в сплаве. Например, латунь ЛЦ23А6Ж3Мц2 содержит 23 % цинка, 6 % алюминия, 3 % железа, 2 % марганца.. Наилучшей жидкотекучестью обладает латунь марки ЛЦ16К4. К литейным латуням относятся латуни типа ЛС, ЛК, ЛА, ЛАЖ. Литейные латуни не склонны к ликвации, имеют сосредоточенную усадку, отливки получаются с высокой плотностью. Латуни являются хорошим материалом для конструкций, работающих при отрицательных температурах .Сплавы меди с другими элементами кроме цинка называются бронзами. Бронзы подразделяются на деформируемые и литейные. При маркировке деформируемых бронз на первом месте ставятся буквы Бр, затем буквы, указывающие, какие элементы, кроме меди, входят в состав сплава. После букв идут цифры, показывающие содержание компонентов в сплаве. Например, марка БрОФ10-1 означает, что в бронзу входит 10 % олова, 1 % фосфора, остальное – медь. Маркировка литейных бронз также начинается с букв Бр, затем указываются буквенные обозначения легирующих элементов и ставится цифра, указывающая его усредненное содержание в сплаве. Например, бронза БрО3Ц12С5 содержит 3 % олова, 12 % цинка, 5 % свинца, остальное – медь. Наличие фосфора обеспечивает хорошую жидкотекучесть. Литейные оловянные бронзы, БрО3Ц7С5Н1, БрО4Ц4С17, применяются для изготовления пароводяной арматуры и для отливок антифрикционных деталей типа втулок, венцов червячных колес, вкладышей подшипников.

55. Полимерные композиционные материалы. Полиме́ры — неорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями. Полимер — это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико. Особенностью является то, что матрицу образуют различные полимеры, служащие связующими для арматуры, которая может быть в виде волокон, ткани, пленок, стеклотекстолита.

Формирование полимерных композиционных материалов осуществляется прессованием, литьем под давлением, экструзией, напылением. Широкое применение находят смешанные полимерные композиционные материалы, куда входят металлические и полимерные составляющие, которые дополняют друг друга по свойствам. Например, подшипники, работающие в условиях сухого трения, изготовляют из комбинации фторопласта и бронзы, что обеспечивает самосмазываемость и отсутствие ползучести. Созданы материалы на основе полиэтилена, полистирола с наполнителями в виде асбеста и других волокон, обладающие высокими прочностью и жесткостью.

По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные. Термопластичные полимеры (полиэтилен, полипропилен, полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения.
56. Пластмассами называют материалы, способные при определенных температуре и давлении принимать заданную форму и сохранять ее в эксплуатационных условиях.

Обычно пластмассу получают в результате совместной обработки высокомолекулярных органических соединений (синтетических смол), наполнителей, окрашивающих веществ, пластификаторов, отвердителей и других добавок. Главной составляющей пластмассы, определяющей ее тип и основные свойства, является смола.

Наполнитель существенно влияет на характеристику пластмассы, изменяя ее физико-механические и электрические свойства. Кроме того, введение наполнителей уменьшает стоимость пластмассы, так как сокращает расход сравнительно дорогой смолы.

В качестве наполнителей применяют молотую слюду, кварц, стекловолокно (минеральные наполнители), а также древесную муку, хлопчатобумажное волокно (органические наполнители).

В зависимости от входящих компонентов все пластмассы можно разделить на следующие виды:

пресспорошки —пластмассы с порошкообразными наполнителями;

волокниты — пластмассы с волокнистыми наполнителями (хлопчатобумажные волокна, стекловолокна, асбестовые волокна);

слоистые пластики —пластмассы с наполнителями в виде ткани или бумаги (текстолит, стеклотекстолит, гетинакс);

литьевые массы — пластики, обычно состоящие только из одного компонента — смолы; эти массы классифицируют по типу смолы;

листовые термопластмассы, состоящие из смолы и небольшого количества пластификатора и стабилизатора (органическое стекло, винипласт).


57.Методы переработки пластмасс.

При выборе методов переработки пластмасс можно использовать следующую их классификацию, основанную на физическом состоянии материала в момент формования:

1. Формование из полимеров, находящихся в вязко-текучем состоянии,— литье под давлением, экструзия, прессование, спекание и др.

2. Формование из полимеров, находящихся в высоко-эластическом состоянии, обычно с использованием листов или пленочных заготовок (вакуумформование, пневмоформование, горячая штамповка и др.).

3. Формование из полимеров, находящихся в твердом (кристаллическом или стеклообразном) состоянии, основанное на способности таких полимеров проявлять высокоэластичностъ вынужденную (штамповка при комнатной темп-ре, прокатка и др.).

4. Формование с использованием растворов и дисперсий полимеров (получение пленок методом полива, формование изделий окунанием формы, ротационное формование пластизолей и др.).

 





Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.232.96.22 (0.01 с.)