Основные виды термообработки 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные виды термообработки



Термическая обработка представляет собой совокупность операций нагрева, выдержки и охлаждения,

Графики различных видов термообработки: отжига (1, 1а), закалки (2, 2а), отпуска (3), нормализации (4)

виды термической обработки:

1. Отжиг 1 рода – возможен для любых металлов и сплавов.

Нагрев, при отжиге первого рода, повышая подвижность атомов, частично или полностью устраняет химическую неоднородность, уменьшает внутреннее напряжения. Характерным является медленное охлаждение

Диффузионный – от ликвации, 1050-1200 гр 10-100ч

Рекрист – 0,3-0,4 т плавл, откл в структуре

Низкий – внутр напр 150-700

2. Отжиг II рода – отжиг металлов и сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении.

Проводится для сплавов, в которых имеются полиморфные или эвтектоидные превращения, а также переменная растворимость компонентов в твердом состоянии.

Характеризуется нагревом до температур выше критических и очень медленным охлаждением, как правило, вместе с печью (рис. 12.1 (1, 1а)).

Доэв – ф+п, эвт – п, заэвт – п+ц

Полный - +30-50 ас 3, охл с печь, фазовая перекрист

Неполный - + 30-50 ас1 неполная перекрист

Норм – доэв 30-50 ас 3, заэвт – 30-50 ассм мелкодисп.

Изотерм 30-50ас3 до распада ауст

3. Закалка – проводится для сплавов, испытывающих фазовые превращения в твердом состоянии при нагреве и охлаждении, с целью повышение твердости и прочности путем образования неравновесных структур (сорбит, троостит, мартенсит).Характеризуется нагревом до температур выше критических и высокими скоростями охлаждения (рис. 12.1 (2, 2а)).

4. Отпуск – проводится с целью снятия внутренних напряжений, снижения твердости и увеличения пластичности и вязкости закаленных сталей. Характеризуется нагревом до температуры ниже критической А (рис. 12.1 (3)).

 

 

Рис. 1. Обозначение критических точек стали

 

Низкий отпуск – 150-250 гр., придание пов-ти высокой ТВ и износ. Для фрез, зубил, метчиков.март.

Ср – 300-400, троостит, пружины

Выс – 500-650, коленвалы, сорбит.

Критические точки А1 лежат на линии PSK (727 °C). Критические точки А2 находятся на линии МО (768 °C). Критические точки А3 лежат на линии GS, а критические точки Аcm — на линии SE. Вследствие теплового гистерезиса превращения при нагреве и охлаждении проходят при разных температурах. Поэтому для обозначения критических точек при нагреве и охлаждении используют дополнительные индексы: буквы «с» в случае нагрева и «r» в случае охлаждения. Например, АС1, АС3, Аr1, Аr3.

 

 

Образование аустенита и рост его зерна при нагреве

Превращение основано на диффузии углерода, сопровождается полиморфным превращением , а так же растворением цементита в аустените.

Диаграмма изотермического образования аустенита: 1 - начало образования аустенита; 2 - конец преобразования перлита в аустенит; 3 - полное растворение цементита.

 

С увеличением перегрева и скорости нагрева продолжительность превращения сокращается. Механизм превращения представлен

Механизм превращения перлита в аустенит.

 

Превращение начинаются с зарождения центров аустенитных зерен на поверхности раздела феррит – цементит, кристаллическая решетка перестраивается в решетку .

Время превращения зависит от температуры, так как с увеличением степени перегрева уменьшается размер критического зародыша аустенита, увеличиваются скорость возникновения зародышей и скорость их роста

Образующиеся зерна аустенита имеют вначале такую же концентрацию углерода, как и феррит. После того, как весь цементит растворится, аустенит неоднороден по химическому составу: там, где находились пластинки цементита концентрация углерода более высокая. Для завершения процесса перераспределения углерода в аустените требуется дополнительный нагрев или выдержка.

Рост зерна аустенита. Образующиеся зерна аустенита получаются мелкими (начальное зерно). При повышении температуры или выдержке происходит рост зерна аустенита. Движущей силой роста является разность свободных энергий мелкозернистой (большая энергия) и крупнозернистой (малая энергия) структуры аустенита.

Стали различают по склонности к росту зерна аустенита. Если зерно аустенита начинает быстро расти даже при незначительном нагреве выше температуры , то сталь наследственно крупнозернистая. Если зерно растет только при большом перегреве, то сталь наследственно мелкозернистая. Заэвтектоидные стали менее склонны к росту зерна. При последующем охлаждении зерна аустенита не измельчаются. Это следует учитывать при назначении режимов термической обработки, так как от размера зерна зависят механические свойства. Крупное зерно снижает сопротивление отрыву, ударную вязкость, повышает порог хладоломкости.

Неправильный режим нагрева может привести либо к перегреву, либо к пережогу стали.

Перегрев. Нагрев доэвтектоидной стали значительно выше температуры приводит к интенсивному росту зерна аустенита. При охлаждении феррит выделяется в виде пластинчатых или игольчатых кристаллов. Такая структура называется видманштеттовая структура и характеризуется пониженными механическими свойствами. Перегрев можно исправить повторным нагревом до оптимальных температур с последующим медленным охлаждением.

Пережог имеет место, когда температура нагрева приближается к температуре плавления. При этом наблюдается окисление границ зерен, что резко снижает прочность стали. Излом такой стали камневидный. Пережог – неисправимый брак.



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 345; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.6.77 (0.008 с.)