Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Формула (3.7) и есть итерационная формула метода Ньютона для приближенного решения системы нелинейных уравнений.Содержание книги
Поиск на нашем сайте
Замечание. В таком виде уравнение (3.7) используется редко в виду того, что на каждой итерации нужно находить обратную матрицу. Поэтому поступают следующим образом: вместо системы (3.6) решают систему линейных алгебраических уравнений вида
Это система линейных алгебраических уравнений относительно поправки Dx(n+1)= x(n+1)- x(n). Затем полагают
Сходимость метода
Теорема. Пусть в некоторой окрестности решения х системы (3.1) функции fi (при i= ) дважды непрерывно дифференцируемы и матрица Якоби не вырождена. Тогда найдется такая малая d окрестность вокруг решения х, что при выборе начального приближения x 0 из этой окрестности итерационный метод (3.7) не выйдет за пределы этой окрестности решения и справедлива оценка вида ,
где n - номер итерации. Метод Ньютона сходится с квадратичной скоростью. На практике используется следующий критерий остановки:
. Решение проблемы собственных значений
Пусть дана квадратная матрица A размерностью (m*m) и существует такое число l, что выполняется равенство
,
тогда такое число l называется собственным значением матрицы А, а x – соответствующим ему собственным вектором. Перепишем это равенство в эквивалентной форме
Система (4.1) - однородная система линейных алгебраических уравнений. Для существования нетривиального решения системы (4.1) должно выполняться условие
Определитель в левой части уравнения является многочленом m-ой степени относительно l, его называют - характеристическим определителем (характеристическим многочленом). Следовательно, уравнение (4.2) имеет m корней или m собственных значений. Среди них могут быть как действительные, так и комплексные корни. Задача вычисления собственных значений сводится к нахождению корней характеристического многочлена (4.2). Корни могут быть найдены одним из итерационных методов (в частности методом Ньютона). Если найдено некоторое собственное значение матрицы A, то подставив это число в систему (4.1) и решив эту систему однородных уравнений, находим собственный вектор х, соответствующий данному собственному значению.
Собственные вектора будем при нахождении нормировать (вектор х умножаем на || х ||-1, и таким образом они будут иметь единичную длину), нахождение собственных значений матрицы A и соответствующих им собственных векторов и есть полное решение проблемы собственных значений. А нахождение отдельных собственных значений и соответствующих им векторов - называется решением частной проблемы собственных значений. Эта проблема имеет самостоятельное значение на практике. Например, в электрических и механических системах собственные значения отвечают собственным частотам колебаний, а собственные вектора характеризуют соответствующие формы колебаний. Эта задача легко решается для некоторых видов матриц - диагональных, треугольных и трехдиагональных матриц. К примеру определитель треугольной или диагональной матрицы равен произведению диагональных элементов, тогда и собственные числа равны диагональным элементам. Пример 1. Матрица А – диагональная . Тогда det(А-lЕ)= , а характеристическое уравнение имеет трехкратный корень l=а. Собственными векторами для матрицы А будут единичные векторы
Пример 2. Найдем собственные числа матрицы
.
Составим характеристический многочлен
Используя метод Ньютона, определим один из корней уравнения Р3(l)=0, а именно l1» -7.87279. Разделив многочлен на (l-l1) получим многочлен второй степени: =l2 + 3.02711l + 2.66765. Решив квадратное уравнение, находим оставшиеся два корня:l2,3» -1.51356 ± 0.613841 * i (комплексное сопряженные корни). Существуют прямые методы нахождения собственных значений и итерационные методы. Прямые методы неудобны для нахождения собственных значений для матриц высокого порядка. В таких случаях с учетом возможностей компьютера более удобны итерационные методы. Прямые методы 4.1.1 Метод Леверрье
Метод разделяется на две стадии: - раскрытие характеристического уравнения, - нахождение корней многочлена.
Пусть det(A-lE) - есть характеристический многочлен матрицы А ={aij} (i,j=1,2,…,m), т.е. , и l1,l2,…,lm - есть полная совокупность корней этого многочлена (полный спектр собственных значений). Рассмотрим суммы вида (k=1,2,…,m), т.е.
где - след матрицы. В этом случае при k£m справедливы формулы Ньютона для всех (1£k£ m)
Откуда получаем
Следовательно, коэффициенты характеристического многочлена р i можно определить, если известны суммы S1,S2,...,Sm. Тогда схема алгоритма раскрытия характеристического определителя методом Леверрье будет следующей: 1) вычисляем степень матрицы: Ак=Ак-1*А для k=1,…,m; 2) определяют Sk - суммы элементов стоящих на главной диагонали матриц Ак; 3) по формулам (4.5) находят коэффициенты характеристического уравнения рi (i=1,2,…,m). 4.1.2 Усовершенствованный метод Фадеева
Алгоритм метода: 1) вычисляют элементы матриц A1,A2,..,Am:
(в конце подсчета Bm нулевая матрица для контроля);
2) определяют коэффициенты характеристического уравнения рi q1 = -р1, q2 = -р2,..., qm = -рm. Существуют и другие методы раскрытия характеристического определителя: метод Крылова, Данилевского и др.
4.1.3 Метод Данилевского Две матрицы A и B называются подобными, если одна получается из другой путем преобразования с помощью некоторой не вырожденной матрицы S:
B=S-1*AS,
если это равенство справедливо, то матрицы A и B подобны, а само преобразование называется преобразованием подобия (переход к новому базису в пространстве m - мерных векторов). Пусть y - результат применения матрицы A к вектору х
y =A* х.
Сделаем замену переменных:
x =S* x ', y =S* y'.
Тогда равенство y =A* х преобразуется к виду
y' =S-1*A*S* x'.
В этом случае матрица B и матрица A имеют одни и те же собственные числа. Это можно легко увидеть раскрыв определитель
. Следовательно, матрицы A и B - подобные, имеют одни и те же собственные значения. Но собственные векторы х и х’ – не совпадают, они связаны между собой простым соотношением
х = S* х '.
Такую матрицу A с помощью преобразования подобия или же последовательности таких преобразований можно привести к матрице Фробениуса вида: .
Детерминант матрицы F det (F) можно разложить по элементам первой строки:
.
Тогда коэффициенты характеристического многочлена матрицы А будут р1 = f11 , p2 = f12,…, pn = f1m.
Второй случай. Матрицу А преобразованием подобия можно привести к матрице В верхнего треугольного вида .
Тогда собственными числами будут диагональные элементы матрицы B:
.
Третий случай. Матрицу A с помощью преобразования подобия можно привести к Жордановой форме
,
где li - собственные числа матрицы A; Si - константы (0 или 1); если Si=1, то li=li+1.
К четвёртому случаю относятся матрицы, которые с помощью преобразования подобия можно привести к диагональному виду (матрица простой структуры):
,
|
||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 327; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.220.255.227 (0.01 с.) |