Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Енергія кінетична та потенціальна. Закон збереження енергіїСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
У механіці розрізняють два види енергії: кінетичну і потен-ціальну . Кінетичною енергією тіла називають енергію, яка є мірою його меха-нічного руху. Кінетична енергія рухомого тіла кількісно дорівнює роботі, яку може виконати тіло проти гальмівної сили при гальмуванні його до пов-ної зупинки: (5.7) Знак "–" вказує на те, що при гальмуванні тіла його прискорення від’ємне; межі інтегрування визначаються швидкістю руху тіла в момент визначення його кінетичної енергії і повною зупинкою. Для системи тіл рівняння (5.7) набирає вигляду: (5.8) Отже, кінетична енергія тіла і системи тіл дорівнює відповідно: (5.9) і є функцією стану руху тіл. Якщо на тіло (або систему тіл) діють консервативні сили, то мож-на ввести поняття потенціальної енергії тіла (або системи тіл). Оскільки робота сил такого поля не залежить від форми траєкторії, а визначається тільки кінцевими точками шляху, то вона є важливою фізичною величиною, що характеризує силове поле. Роботу сил поля по переміщенню тіла з точки 1 у точку 0 (рис.5.2) позначимо через ,а з точки 2 у точку 0 – через ; і назвемо потенціальними енергіями тіла в точках 1 і 2 відповідно (аналогічно визначенню поняття кінетичної енергії): ; Тоді, згідно з визначенням поняття консервативних сил, робота сил поля по переміщенню тіла із точки 1 у точку 2 буде: . (5.10)
Рис.5.2
Для нескінченно малих переміщень: . (5.11) Таким чином, робота, виконана над тілом консервативними силами, дорівнює зміні потенціальної енергії тіла, узятій із протилежним знаком. Оскільки , то , а компоненти сили можуть бути виражені рівняннями: ; ; . (5.12) Величину сили знаходимо за співвідношенням:
, (5.13)
а силу як вектор знайдемо через компоненти та орти:
;
(5.14) Сила дорівнює градієнту потенціальної енергії. Градієнтом називають вектор, що показує напрямок найшвидшої монотонної зміни деякої вели-чини, значення якої змінюється від однієї точки простору до іншої. З рів-нянь (5.7) і (5.11) знаходимо: . Отже: . (5.15) Це і є закон збереження повної енергії замкненої механічної системи, тобто окремий випадок одного з фундаментальних законів природи, у від-повідності з яким повна енергія замкненої системи при будь-яких процесах залишається незмінною. Швидкість механічної системи і її положення в просторі залежать від вибору системи відліку, тобто є відносними. Це означає, що кінетична і по-тенціальна енергія системи самі по собі є відносними і визначаються лише з точністю до постійних величин, тобто визначається лише зміна цих видів енергії внаслідок участі системи в тих або інших процесах. Закон збережен-ня енергії вказує на те, що в замкнених системах можливі лише такі проце-си, при яких один вид енергії може перетворюватися на інший зі збережен-ням незмінної повної енергії. У цьому й проявляється єдність матеріального світу. Зіткнення двох тіл Прикладом використання законів збереження імпульсу та енергії замкненої системи тіл може бути розгляд зіткнення двох тіл. Для спрощен-ня викладу розглянемо центральний удар двох тіл. Удар називають цент-ральним, якщо центри інерції тіл до удару рухалися уздовж прямої, що про-ходить через ці центри.Існує два граничних види удару: абсолютно непруж-ний та абсолютно пружний. При абсолютно непружному ударі кінетична енергія тіл повністю або частково перетворюється на внутрішню енергію; після удару тіла або зупи-няються, або рухаються з однаковою швидкістю. При цьому зберігається повна енергія системи, що складається з потенціальної енергії системи у зовнішніх потенціальних полях, кінетичної енергії системи та її внутріш-ньої енергії U. Внутрішня енергія тіла визначається станом руху й взаємним розташуванням мікрочастинок, з яких складається це тіло. З погляду меха-ніки внутрішня енергія тіла складається з кінетичної енергії механічного руху мікрочастинок тіла і потенціальної енергії взаємодії цих частинок. При ударі відбувається взаємне перетворення кінетичної та внутрі-шньої енергії тіл; потенціальна енергія тіл у зовнішніх потенціальних полях у процесі самого удару не змінюється. Тому цей вид енергії системи надалі не розглядається. Якщо кінетична енергія тіл у результаті удару повністю перетворю-ється на внутрішню, то тіла зупиняються, а внутрішню енергію U системи після зіткнення знаходимо як суму кінетичних енергій тіл: . (5.16) Якщо кінетична енергія перетворюється на внутрішню лише частково, а тіла після зіткнення рухаються з однаковою швидкістю , то після зіткнення тіл за законами збереження імпульсу й енергії можна знайти невідомі величини і U:
При абсолютно пружному ударі кінетична енергія перетворюється повністю або частково на внутрішню енергію пружної деформації, а потім при відштовхуванні тіл знову на кінетичну. При повному переході кінетичної енергії у внутрішню тіла відразу після взаємодії зупиняються, а при зворотному перетворенні енергії руха-ються окремо з різними швидкостями. Закони збереження імпульсу і енергії в цьому випадку описуються рівняннями: (5.18)
При неповному перетворенні кінетичної енергії на внутрішню отримаємо: (5.19) Розв’язуючи системи рівнянь (5.18) і (5.19), можна знайти невідомі величини U, та у кожному конкретному випадку. При цьому закон збереження імпульсу варто застосовувати в проекціях на напрямок руху.
Приклад розв’язування задач Дві ідеально пружні кульки масами m 1 та m 2 рухаються уздовж однієї й тієї самої прямої зі швидкостями і .Під час зіткнення кульки почи-нають деформуватися й частина кінетичної енергії перетворюється на по-тенціальну енергію деформації. Потім деформація зменшується, а запасена потенціальна енергія знову перетворюється на кінетичну. Знайти значення максимальної потенціальної енергії деформації. Розв’язування Оскільки кулі виконують абсолютно пружний удар із частковим пере-творенням кінетичної енергії на внутрішню, то для знаходження потенці-альної енергії деформації (тобто зміни внутрішньої енергії системи куль) необхідно скористатися законами збереження імпульсу та енергії системи куль:
Тут – швидкість спільного руху максимально деформованих куль. З першого рівняння знаходимо швидкість і, підставивши її значення в друге рівняння, знаходимо Wp:
|
||||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 696; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.3.17 (0.008 с.) |