Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Полупроводниковые светодиодыСодержание книги
Поиск на нашем сайте
Для достижения генерации лазера любого типа (полупроводниковых, газовых, жидкостных и твердотельных) необходимо выполнение трёх основных требований: 1) осуществление возбуждения или накачки электронов с нижнего уровня на верхний; 2) наличие большого числа инвертированных электронов или создание инверсной заселённости для того, чтобы интенсивность стимулированного излучения превышала потери; 3) наличие резонатора для обеспечения положительной обратной связи и квантового усиления. В отличие от лазеров других типов, в полупроводниковых лазерах используются излучательные переходы между разрешёнными энергетическими зонами, а не между дискретными энергетическими уровнями энергии. В основном, инверсная населённость создаётся с помощью инжекции через p-n переход неравновесных носителей тока, путём приложения внешнего напряжения в прямом направлении. На рис.2.1. представлено положение уровня Ферми в собственном и примесном полупроводниках. Одно из важных свойств уровня Ферми заключается в том, что в системе, состоящей из полупроводников n- и p-типа и если к ним не приложено напряжение, уровни Ферми (Fn и Fp) у них выравниваются (рис.2.4.а). А если они находятся под разными потенциалами, то уровни Ферми в них сдвигаются на величину разности потенциалов (рис.2.4.б).
Рис. 2.4. Энергетическая диаграмма инжекционного полупроводникового лазера. а – p-n переход без приложенного внешнего напряжения, б - p-n переход при приложении внешнего напряжения в прямом направлении, d – ширина p-n перехода, l – реальная ширина области, обеспечивающей работу лазера
Рис. 2.5. Поперечный разрез светоизлучающего диода (а) и образцы светодиодов синего, зелёного и красного цвета
В этом случае в зоне p-n перехода создаётся инверсная заселённость и электроны совершают переход из зоны проводимости в валентную зону (рекомбинируют с дырками). При этом испускаются фотоны с энергией h w. hw.энергией фотоны По такому принципу работает светодиод (Рис. 2.5). Но если для этих фотонов создать обратную связь в виде оптического резонатора, то в области p-n перехода при больших значениях внешнего приложенного напряжения можно получить лазерную генерацию. При этомбинируют с с дырками).д из зоны проводимости в зонуних сдвигаются на величину разности потенциалова, уровень Фетми один и тот же. ме, состоящей из нескоьлекторонов в валентной зоне) и малых значениях внешнего приложенного напряжения процесс образования и рекомбинации неравновесных носителей происходит хаотично и излучение обладает малой мощностью и является некогерентным и немонохроматическим. Это соответствует светодиодному режиму работы полупроводникового лазера. При увеличении тока выше некоторого порогового значения излучение становится когерентным, его спектральная ширина сильно сужается, а интенсивность резко возрастает – начинается лазерный режим работы полупроводникового лазера. При этом также увеличивается степень линейной поляризации генерируемого излучения. На рис.2.6 схематично представлена конструкция полупроводникового лазера и распределение интенсивности выходного излучения. Как правило, в таком лазере резонатор создаётся полировкой двух диаметрально противоположных сторон кристалла, перпендикулярных плоскости p-n перехода. Эти плоскости делаются параллельными и полируются с высокой степенью точности. Выходную поверхность можно рассматривать как щель, через которое проходит излучение, и угловая расходимость излучения лазера определяется дифракцией излучения на этой щели. При толщине p-n перехода в 20 мкм и ширине – 120 мкм, угловая расходимость соответствует приблизительно 60 в плоскости XZ и 10 – в плоскости YZ.
Рис. 2.6. Принципиальная схема лазера на p-n-переходе. 1-область p-n-перехода (активный слой); 2-сечение лазерного пучка в плоскости Х-Y
|
||||
Последнее изменение этой страницы: 2021-03-10; просмотров: 137; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.105.80 (0.01 с.) |