Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

В.Г. Беспалов, В.Н. Крылов, В.Н. Михайлов

Поиск

В.Г. БЕСПАЛОВ, В.Н. КРЫЛОВ,

В.Н. МИХАЙЛОВ

 

ОСНОВЫ
ОПТОИНФОРМАТИКИ

РАЗДЕЛ I

 

 

 

Санкт-Петербург

2008


Министерство образования и науки Российской Федерации

 

Федеральное агентство по образованию

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

В.Г. Беспалов, В.Н. Крылов, В.Н. Михайлов

 

ОСНОВЫ ОПТОИНФОРМАТИКИ

Раздел I

 

 

Санкт-Петербург

2008


УДК 535+519.7; 681.3.01

Беспалов В.Г., Крылов В.Н., Михайлов В.Н.

От электронного к оптическому компьютеру

 

Информационные технологии – от абака

К электронному процессору

 

В настоящее время термин "информатика" все чаще заменяется более содержательным термином "информационные технологии" (ИТ), по определению [www.glossary.ru], Информационные технологии - совокупность методов, производственных и программно-технологических средств, объединенных в технологическую цепочку, обеспечивающую сбор, хранение, обработку, вывод и распространение информации. Информационные технологии предназначены для снижения трудоемкости процессов использования информационных ресурсов. Сoглacнo oпpeдeлeнию, пpинятoмy ЮНЕСКО, инфopмaциoннaя тexнoлoгия - этo кoмплeкc взaимocвязaнныx, нayчныx, тexнoлoгичecкиx, инжeнepныx диcциплин, изyчaющиx мeтoды эффeктивнoй opгaнизaции тpyдa людeй, зaнятыx oбpaбoткoй и xpaнeниeм инфopмaции, вычиcлитeльнyю тexникy и мeтoды opгaнизaции и взaимoдeйcтвия c людьми и пpoизвoдcтвeнным oбopyдoвaниeм, иx пpaктичecкиe пpилoжeния, a тaкжe cвязaнныe co вceм этим coциaльныe, экoнoмичecкиe и кyльтypныe пpoблeмы. В настоящее время ИТ становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Основной технической базой ИТ являются средства обработки, хранения и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Последние десятилетия характеризуются возрастанием интереса к истории развития информатики, в первую очередь к истории появления первых цифровых вычислительных машин и их создателям. В большинстве развитых стран созданы музеи, сохраняющие образцы первых машин, проводятся конференции и симпозиумы, выпускаются книги о приоритетных достижениях в этой области. История создания средств цифровой вычислительной техники уходит в глубь веков. Она увлекательна и поучительна, с нею связаны имена выдающихся ученых мира.

Изначально носителем информации была речь. Развитие речи, языка - объективный процесс в развитии общества и является первой информационной революцией на заре формирования человека разумного (40 тыс. лет до н.э.). Развитие речи помогало общению, передаче накопленного опыта и знаний. В дальнейшем возникла потребность в передаче информации знаковым образом - появилось первобытное искусство — целые галереи наскальных рисунков с изображением животных и охоты сохранились в пещерах, например в Альтаирской пещере (Испания), которую один из археологов назвал «первобытной Сикстинской капеллой», в пещере Монтеспан (Франция), Костенки (на Дону) найдены многочисленные статуэтки женщин, животных. К ранним знаковым информационным системам можно отнести приметы, гадания, изобразительное искусство, музыку, графику, танец и т.д. Постепенно развивался процесс обособления и подъема духовной сферы — изобразительного и музыкального искусства, архитектуры. Изобретение и освоение письменности стало второй информационной революцией (около 5 тыс. лет до н.э.). К каменному веку относятся первые примеры информационной символики — пиктографическое письмо (рисунки) на камне. В бронзовом веке появились изображения повторяющихся систем понятий — идеограмм, которые к концу IV в. до н. э. превратились в рисуночное иероглифическое письмо. В этот же период благодаря развитию производства и торговли совершенствуется числовая символика, которая сначала возникла в виде счета из двух чисел — 1 и 2. Дальнейшее развитие счета произошло благодаря физиологическим особенностям человека — наличию пальцев на руках (счет с 5 до 10). Три тысячи лет до н. э. в Вавилоне возникла клинописная запись счета. Позднее появились другие способы записи счета, например вавилонская, критская, латинская, арабская. Добумажные ИТ характеризуются постоянным совершенствованием носителя информации. Запись на камне впервые позволила добиться эффекта обезличения процесса передачи информации. Запись на глиняных табличках и деревянных дощечках дала возможность перейти к информационным коммуникациям, изобретение папируса (III тыс. до н.э.) означало значительное повышение емкости носителя информации, а применение пергамента завершило добумажную фазу: появился оптимальный носитель информации — книга (IV в. до н.э.). Александрийская библиотека была основана в 3 веке до н. э. и хранилища одного из крупнейших собраний книг той эпохи насчитывало по разным сведениям от 40 тыс. до 500 тыс. свитков. Александрийская библиотека была значительным научным центром, где работали Эратосфен, Зенодот, Аристарх Самосский, Каллимах и др. Весь объем информации, заключавшийся в свитках Александрийской библиотеки можно оценить в 106 – 108 слов или в 0.1…1 Гб и это можно назвать одним из первых ИТ хранения.

 В те же времена начали развиваться и ИТ передачи информации –качественно новый, более динамичный и открытый характер информационные коммуникации приобрели, когда в крупных государствах (Греция, Персия, Египет IV – III в. до н.э.) возникла хорошо налаженная почтовая связь.

Первая ИТ система обработки информации появилась в то время, когда с увеличением объёма вычислений от счета на предметах человек естественно перешел на счет на абаке. Древнегреческий абак (доска или "саламинская доска" по имени острова Саламин в Эгейском море) представлял собой посыпанную морским песком дощечку. На песке проводились бороздки, на которых камешками обозначались числа. Римляне усовершенствовали абак, перейдя от деревянных досок, песка и камешков к мраморным доскам с выточенными желобками и мраморными шариками.

 

 

 

Рис. 1. Древнеримский абак

 

Абак или в дальнейшем счеты сохранились до эпохи возрождения, а в видоизмененном виде, сначала как "дощатый счет" и как русские счеты - до наших дней. Абак удобно использовать для выполнения операций сложения и вычитания, умножение и деление выполнять при помощи абака гораздо сложнее. Революцию в области механизации умножения и деления, и соответственно в области ИТ обработки информации, совершил шотландский математик Джон Непер (John Neper).

 

 

Рис. 2. Джон Непер (1550 - 1617) создал деревянную машину для выполнения простейших вычислений – счетные палочки

 

Изобретение логарифмов в 1614 г. - крупнейшее достижение Джона Непера, при помощи логарифмических таблиц легко было выполнять умножение и деление больших чисел. Джон Непер также создал прибор для умножения с использованием логарифмов, названный счетными палочками. Особенно интересно изобретение Непером счетной доски для умножения, деления, возведения в квадрат, извлечения квадратного корня в двоичной системе счисления. В 1622 году, используя принцип действия этого устройства, Вильям Оугтред (William Oughtred) разработал логарифмическую линейку, которая в 19-20 веках стала основным инструментом инженеров.

В дневниках гениального итальянца Леонардо да Винчи (1452-1519) уже в наше время был обнаружен ряд рисунков, которые оказались эскизным наброском первой вычислительной машины - тринадцатиразрядного десятичного суммирующего устройства на основе колес с десятью зубцами.

 

 

Рис. 3. Автопортрет и модель счетного устройства Леонардо да Винчи

 

Считается, что первая машина, способная автоматически выполнять четыре арифметических действия, была создана в 1623 году Вильгельмом Шиккардом (1592-1635). Причиной, побудившей Шиккарда разработать счетную машину для суммирования и умножения шестиразрядных десятичных чисел, было его знакомство с польским астрономом И. Кеплером. Ознакомившись с работой великого астронома, связанной в основном с вычислениями, Шиккард загорелся идеей оказать ему помощь в нелегком труде. В письме на его имя, отправленном в 1623 г., он приводит рисунок машины и рассказывает, что она устроена на базе шестиразрядного десятичного вычислителя, состоявшего также из зубчатых колес, рассчитанного на выполнение сложения, вычитания, а также табличного умножения и деления. Об изобретениях Леонардо да Винчи и Вильгельма Шиккарда стало известно лишь в наше время, современникам они были неизвестны.

В 1642 году великий французский ученый Блез Паскаль (1623-1662) механизировал канцелярские расчеты по налогообложению, соорудив настольный арифмометр на основе зубчатого колеса. 18-летний сын французского сборщика налогов изобрел механический калькулятор, чтобы помочь отцу в расчетах с пошлинами. В медной прямоугольной коробке, получившей название “Pascaline”, были размещены шесть или восемь подвижных дисков.

 

 

Рис. 4. Блез Паскаль создал машину для суммирования чисел

 

В 1673 г. другой великий европеец, немецкий ученый Вильгельм Готфрид Лейбниц (1646-1716), создает счетную машину (арифметический прибор, по словам Лейбница) для сложения и умножения двенадцатиразрядных десятичных чисел. К зубчатым колесам он добавил ступенчатый валик, позволяющий осуществлять умножение и деление. "...Моя машина дает возможность совершать умножение и деление над огромными числами мгновенно, притом не прибегая к последовательному сложению и вычитанию", – писал В. Лейбниц одному из своих друзей. В 1821 году француз Карл Томас организовал серийное производство арифмометров, основанных на применении ступенчатого валика Лейбница. В дальнейшем петербургским ученым В.Т. Однером был создан и организован массовый выпуск арифмометров, которые распространились по всему миру. Несколько десятков лет это была самая распространенная вычислительная машина. Однер заменил ступенчатые валики Лейбница зубчатым колесом с меняющимся числом зубцов. В 1876 г. был создан первый арифмометр Чебышева, который является 10-разрядной суммирующей машиной с непрерывной передачей десятков, где колесо высшего разряда продвигается на одно деление, в то время как колесо низшего разряда переходит с 9 на 0. На основе арифмометра Чебышева в 1935 г. в СССР был выпущен клавишный полуавтоматический арифмометр КСМ-1 (клавишная счетная машина). Эта машина имела два привода: электрический (со скоростью 300 оборотов в минуту) и ручной (на случай отсутствия питания). В различных модификациях подобные арифмометры использовались вплоть до 80-х годов XX века.

Считается, что первым ученым, предложившим использовать принцип программного управления для автоматического выполнения арифметических вычислений, был английский профессор математики Чарльз Бэббидж (1791-1871). Разочарованный большим количеством ошибок в вычислениях Королевского Астрономического Общества, Бэббидж пришел к мысли о необходимости автоматизации вычислений. Первая попытка реализации такой машины была предпринята Бэббиджем в 1822 г., когда он создал машину, предназначенную для решения дифференциальных уравнений, названную “разностной машиной”.

 

 

Рис. 5. Чарлз Бэббидж и модель аналитической машины (25 тыс. деталей, стоимость 17470 ф.с.)

 

Работа модели основывалась на принципе, известном в математике как "метод конечных разностей". Аналитическая машина (так назвал ее Бэббидж), проект которой он разработал в 1836-1848 годах, явилась механическим прототипом появившихся спустя столетие ЭВМ. В ней предполагалось иметь те же, что и в ЭВМ, пять основных устройств: арифметическое, памяти, управления, ввода, вывода. Для арифметического устройства Ч. Бэббидж использовал зубчатые колеса, подобные тем, что использовались ранее. На них же Ч. Бэббидж намеревался построить устройство памяти из 1000 50-разрядных регистров (по 50 колес в каждом). Программа выполнения вычислений записывалась на перфокартах (пробивками), на них же записывались исходные данные и результаты вычислений. В число операций, помимо четырех арифметических, была включена операция условного перехода и операции с кодами команд. Автоматическое выполнение программы вычислений обеспечивалось устройством управления. Время сложения двух 50-разрядных десятичных чисел составляло, по расчетам ученого, 1 с., умножения – 1 мин. Движение механических частей машины должен был осуществлять паровой двигатель. Большая, как локомотив, машина должна была автоматически выполнять вычисления и печатать результаты. Программы вычислений на машине Беббиджа, составленные дочерью Байрона Адой Августой Лавлейс (1815-1852), поразительно схожи с программами, составленными впоследствии для первых ЭВМ. Не случайно именем этой замечательной женщины назвали одну из первых систем программирования. Большая разностная машина так и не была построена до конца. В 1871 году Бэббидж изготовил опытный образец арифметического устройства ("завода") аналитической машины и принтера. Технические трудности, с которыми пришлось встретиться при реализации, не позволили осуществить проект, поэтому Бэббидж не опубликовал проект полностью, а ограничился описанием его в своих лекциях, чертежах и рисунках.

В 1847 году английский математик Джордж Буль (1815-1864) опубликовал работу "Математический анализ логики". Появился новый раздел математики, получивший название - "Булева алгебра". Каждая величина в ней может принимать только одно из двух значений: истина или ложь, 1 или 0. Буль изобрел своеобразную алгебру - систему обозначений и правил, применимую к различным объектам, от чисел до предложений. Пользуясь правилами алгебры, он мог закодировать высказывания (утверждения, истинность или ложность которых требовалось доказать) с помощью символов своего языка, а затем манипулировать ими, подобно тому как в математике манипулируют числами. Основными операциями булевой алгебры являются конъюнкция (И), дизъюнкция (ИЛИ), отрицание (НЕ). Через некоторое время стало понятно, что система Буля хорошо подходит для описания переключательных схем. Ток в электрической цепи может либо протекать, либо отсутствовать, подобно тому, как утверждение может быть либо истинным, либо ложным. Разработанная им алгебра логики (алгебра Буля) нашла применение лишь в следующем веке, когда понадобился математический аппарат для проектирования схем ЭВМ, использующих двоичную систему счисления.

 Через 63 года после смерти Ч. Бэббиджа немецкий студент Конрад Цузе (1910-1985) взял на себя задачу создать машину, подобную по принципу действия той, которой отдал жизнь Ч. Бэббидж. Работу по созданию машины он начал в 1934 г., за год до получения инженерного диплома. Конрад ничего не знал ни о машине Беббиджа, ни о работах Лейбница, ни о алгебре Буля, которая словно создана для того, чтобы проектировать схемы с использованием элементов, имеющих лишь два устойчивых состояния. Тем не менее он оказался достойным наследником В. Лейбница и Дж. Буля, поскольку вернул к жизни уже забытую двоичную систему исчисления, а при расчете схем использовал нечто подобное булевой алгебре. В 1937 г. машина Z1 (что означало "Цузе 1") была готова и заработала. Она была, подобно машине Беббиджа, чисто механической. Использование двоичной системы сотворило чудо – машина занимала всего два квадратных метра на столе в квартире изобретателя! Длина слов составляла 22 двоичных разряда. Выполнение операций производилось с использованием плавающей запятой. Для мантиссы и ее знака отводилось 15 разрядов, для порядка – 7. Память (тоже на механических элементах) содержала 64 слова (против 1000 у Беббиджа, что тоже уменьшило размеры машины). Числа и программа вводилась вручную. Еще через год в машине появилось устройство ввода данных и программы, использовавшее киноленту, на которую перфорировалась информация, а механическое арифметическое устройство заменило АУ последовательного действия на телефонных реле.

Почти одновременно, в 1943 году, американец Говард Эйкен с помощью работ Бэббиджа на основе техники XX века – электромеханических реле – смог построить на одном из предприятий фирмы IBM легендарный гарвардский «Марк-1» (а позднее еще и «Марк-2»). «Марк-1» имел в длину 15 метров и в высоту 2,5 метра, содержал 800 тысяч деталей, располагал 60 регистрами для констант, 72 запоминающими регистрами для сложения, центральным блоком умножения и деления, мог вычислять элементарные трансцендентные функции.

Работа по созданию первой электронно-вычислительной машины была начата, по-видимому, в 1937 году в США профессором Джоном Атанасовым, болгарином по происхождению. Эта машина была специализированной и предназначалась для решения задач математической физики. В ходе разработок Атанасов создал и запатентовал первые электронные устройства, которые впоследствии применялись довольно широко в первых компьютерах. Атанасов сформулировал, а в 1939 году опубликовал окончательный вариант своей концепции современной вычислительной машины. Полностью проект Атанасова не был завершен, однако через три десятка лет в результате судебного разбирательства профессора признали родоначальником электронной вычислительной техники.

Летом 1940 г. другим выдающимся ученым Норбертом Винером (1894 – 1964) были сформулированы требования к созданию быстродействующей вычислительной машины:

«1) Центральные суммирующие и множительные устройства должны быть цифровыми, как в обычном арифмометре, а не основываться на измерении, как в дифференциальном анализаторе Буша.

2) Эти устройства, являющиеся по существу переключателями, должны состоять из электронных ламп, а не из зубчатых передач или электромеханических реле. Это необходимо, чтобы обеспечить достаточное быстродействие.

3) В соответствии с принципами, принятыми для ряда существующих машин Белловских телефонных лабораторий, должна использоваться более экономичная двоичная, а не десятичная система счисления.

4) Последовательность действий должна планироваться самой машиной так, чтобы человек не вмешивался в процесс решения задачи с момента введения исходных данных до снятия окончательных результатов. Все логические операции, необходимые для этого, должна выполнять сама машина.

 

Рис. 6. Норберт Винер (слева) – основатель кибернетики и Джон фон Нейман

 

5) Машина должна содержать устройство для хранения данных. Это устройство должно быстро их записывать, надежно хранить до стирания, быстро считывать, быстро стирать их и немедленно подготавливаться к запасанию нового материала.». Данные требования были полностью учтены дальнейшими разработчиками ЭВМ.

Начиная с 1943 года группа специалистов под руководством Говарда Эйкена, Дж. Моучли и П. Эккерта в США начала конструировать вычислительную машину на основе электронных ламп, а не на электромагнитных реле. Эта машина была названа ENIAC (Electronic Numeral Integrator And Computer) и работала она в тысячу раз быстрее, чем «Марк-1».

 

 

 

Рис. 7. ENIAC (Electronic Numeral Integrator And Computer)

 

ENIAC содержал 18 тысяч вакуумных ламп, занимал площадь 9x15 метров, весил 30 тонн и потреблял мощность 150 киловатт. ENIAC имел и существенный недостаток – управление им осуществлялось с помощью коммутационной панели, у него отсутствовала память, и для того чтобы задать программу приходилось в течение нескольких часов или даже дней подсоединять нужным образом провода. Худшим из всех недостатков была ужасающая ненадежность компьютера, так как за день работы успевало выйти из строя около десятка вакуумных ламп.

Чтобы упростить процесс задания программ, Моучли и Эккерт стали конструировать новую машину, которая могла бы хранить программу в своей памяти. В 1945 году к работе был привлечен знаменитый математик Джон фон Нейман, который подготовил доклад об этой машине. В этом докладе фон Нейман, основываясь на идеях Н. Винера, сформулировал общие принципы функционирования универсальных вычислительных устройств, т.е. компьютеров. Это первая действующая машина, построенная на вакуумных лампах, официально была введена в эксплуатацию 15 февраля 1946 года. Эту машину пытались использовать для решения некоторых задач, подготовленных фон Нейманом и связанных с проектом атомной бомбы. Затем она была перевезена на Абердинский полигон, где работала до 1955 года.

ENIAC стал первым представителем 1-го поколения компьютеров. Любая классификация условна, но большинство специалистов согласилось с тем, что различать поколения следует исходя из той элементной базы, на основе которой строятся машины. Таким образом, первое поколение представлено ламповыми машинами.

Патент на открытие транзистора был выдан в 1948 году американцам Д. Бардину и У. Браттейну, а через восемь лет они вместе с теоретиком В. Шокли стали лауреатами Нобелевской премии. Скорости переключения уже первых транзисторных элементов оказались в сотни раз выше, чем ламповых, надежность и экономичность – тоже. Успехи полупроводниковой технологии и связанные с этим возможности совершенствования структуры компьютеров, расширения выполняемых функций и усложнения решаемых задач привели к смене элементной базы. Запоминающие устройства на магнитных сердечниках, магнитных барабанах и магнитных лентах вытеснили полностью запоминающие устройства на электронно-лучевых трубках и ртутных ультразвуковых линиях задержки, применяемых в компьютерах первого поколения. Сначала лампы были заменены в оперативной памяти, затем в арифметическом и управляющем устройствах германиевыми диодами, позже в оперативной памяти стали применяться феррит-диодные и феррит-транзисторные ячейки, позволявшие реализовать логические функции управления памятью, а в арифметическом и управляющем устройствах - транзисторы. Впервые стала широко применяться память на ферритовых сердечниках и тонких магнитных пленках, были опробованы индуктивные элементы – параметроны.

Первые серийные универсальные ЭВМ на транзисторах были выпущены в 1958 году одновременно в США, ФРГ и Японии. В Советском Союзе первые безламповые машины «Сетунь», «Раздан» и «Раздан 2» были созданы в 1959-1961 годах. В 60-х годах советские конструкторы разработали около 30 моделей транзисторных компьютеров, большинство которых стали выпускаться серийно. Наиболее мощный из них – «Минск 32» выполнял 65 тысяч операций в секунду. Появились целые семейства машин: «Урал», «Минск», БЭСМ. Рекордсменом среди ЭВМ второго поколения стала БЭСМ 6, имевшая быстродействие около миллиона операций в секунду – одна из самых производительных в мире. В структуре БЭСМ-6 впервые в отечественной практике и независимо от зарубежных ЭВМ (STRETCH фирмы IBM) был широко использован принцип совмещения выполнения команд (до 14 одноадресных машинных команд могли находиться на разных стадиях выполнения). Этот принцип, названный главным конструктором БЭСМ-6 академиком С. А. Лебедевым принципом "водопровода", стал впоследствии широко использоваться для повышения производительности универсальных ЭВМ, получив в современной терминологии название конвейера команд.  

Приоритет в изобретении интегральных схем, ставших элементной базой ЭВМ третьего поколения, принадлежит американским ученым Д. Килби и Р. Нойсу, сделавшим это открытие независимо друг от друга.

 

 

        А                                                              Б

Рис. 8. Первая планарная интегральная схема 1961 г. (А), и отдельный транзистор по технологии 90 нм (Б) (2005 г.)

 

Массовый выпуск интегральных схем начался в 1962 году, а в 1964 начал быстро осуществляться переход от дискретных элементов к интегральным. Упоминавшийся выше ЭНИАК размерами 9x15 метров в 1971 году мог бы быть собран на пластине в 1,5 квадратных сантиметра. В 1964 году фирма IBM объявила о создании шести моделей семейства IBM (System 360), ставших первыми компьютерами третьего поколения. Модели имели единую систему команд и отличались друг от друга объемом оперативной памяти и производительностью.

Начало 70-х годов знаменует переход к компьютерам четвертого поколения – на сверхбольших интегральных схемах (СБИС). Другим признаком ЭВМ нового поколения являются резкие изменения в архитектуре.

Техника четвертого поколения породила качественно новый элемент ЭВМ – микропроцессор или чип (от английского слова chip). В 1971 году пришли к идее ограничить возможности процессора, заложив в него небольшой набор операций, микропрограммы которых должны быть заранее введены в постоянную память. Оценки показали, что применение постоянного запоминающего устройства в 16 килобит позволит исключить 100-200 обычных интегральных схем. Так возникла идея микропроцессора, который можно реализовать даже на одном кристалле, а программу в его память записать навсегда.

К середине 70-х годов положение на компьютерном рынке резко и непредвиденно стало изменяться. Четко выделились две концепции развития ЭВМ. Воплощением первой концепции стали суперкомпьютеры, а второй – персональные ЭВМ. Из больших компьютеров четвертого поколения на сверхбольших интегральных схемах особенно выделялись американские машины «Крей-1» и «Крей-2», а также советские модели «Эльбрус-1» и «Эльбрус-2». Первые их образцы появились примерно в одно и то же время – в 1976 году. Все они относятся к категории суперкомпьютеров, так как имеют предельно достижимые для своего времени характеристики и очень высокую стоимость. К началу 80-х годов производительность персональных компьютеров составляла сотни тысяч операций в секунду, производительность суперкомпьютеров достигала сотен миллионов операций в секунду, а мировой парк компьютеров превысил 100 млн.

19 апреля 1965 года, в журнале Electronics (vol. 39, No.8) вышла знаменитая теперь статья Гордона Мура (Gordon Moore) «Переполнение числа элементов на интегральных схемах» («Cramming more components onto integrated circuits»), в которой тогдашний директор отдела разработок компании Fairchild Semiconductors и будущий сооснователь корпорации Intel дал прогноз развития микроэлектроники на ближайшие десять лет, предсказав, что количество элементов на кристаллах электронных микросхем будет и далее удваиваться каждый год.

 

Рис. 9. Гордон Мур и его прогноз роста числа транзисторов на интегральных схемах 1965 г.

 

Позднее, выступая в 1975 году перед аудиторией конференции International Electron Devices Meeting, Годрон Мур отметил, что за прошедшее десятилетие количество элементов на кристаллах действительно удваивалось каждый год, однако в будущем, когда сложность чипов возрастёт, удвоение числа транзисторов в микросхемах будет происходить каждые два года. Это новое предсказание также сбылось, и закон Мура продолжает в этом виде (удвоение за два года) действовать и поныне, что можно наглядно видеть по следующей таблице и графику.

Таблица

 

Микропроцессор Год выпуска Число транзисторов
4004 1971 2 300
8008 1972 2 500
8080 1974 5 000
8086 1978 29 000
286 1982 120 000
Intel 386 1985 275 000
Intel 486 1989 1 180 000
Intel Pentium 1993 3 100 000
Intel Pentium II 1997 7 500 000
Intel Pentium III 1999 24 000 000
Intel Pentium 4 2000 42 000 000
Intel Itanium 2002 220 000 000
Intel Itanium 2 2003 410 000 000
Intel Itanium (Montecito) 2005 1 720 000 000

Рис. 10. Закон Мура

 

Если судить по последнему технологическому скачку, который удалось совершить Intel за последний год, подготовив двуядерные процессоры с удвоенным количеством транзисторов на кристалле, а в случае с переходом от Madison к Montecito – так вообще учетверяющему это количество, то закон Мура возвращается, пусть и ненадолго, к своему первоначальному виду – удвоение числа элементов на микросхеме за год.

    Можно рассмотреть следствие закона для тактовой частоты микропроцессоров, хотя Гордон Мур неоднократно утверждал, что его закон относится только к числу транзисторов на кристалле и отражает общие для многих процессов экспоненциальные закономерности развития.

Рис. 11. Следствие из закона Мура для тактовой частоты электронного микропроцессора

 

В связи с бурным развитием микроэлектроники возникают вопросы. Можно ли ожидать появление в 2020 г. электронного микропроцессора с тактовой частотой 100 ГГц? Возможно ли уменьшение электрического напряжения на ядре микропроцессора и, соответственно, уменьшение теплоотдачи? Например, производство памяти и процессоров по технологии 65 нанометров отлажено,  а на 2008-й год намечен переход на 45-нанометровый процесс, на 2009 год – внедрение 32-нанометрового, а в 2011 году настанет черёд технологического процесса 22 нм. Но что ожидается после 2011 года? Станет ли возможным создание транзисторов по технологиям 16, 11 и 8 нм с длинами затворов транзисторов 7, 5 и 3 нм соответственно?


Основы теории информации

 

Термин "информация" происходит от латинского слова " informatio ", что означает сведения, разъяснения, изложение. Информация — это настолько общее и глубокое понятие, что его нельзя объяснить одной фразой. В третьем издании Большой Советской Энциклопедии читаем: «ИНФОРМАЦИЯ - любые сведения и данные, отражающие свойства объектов в природных (биологических, физических и др.), социальных и технических системах и передаваемые звуковым, графическим (в том числе письменным) или иным способом без применения или с применением технических средств». В словаре Вебстера следующее определение термина: «Сообщение, или получение знаний или све­дений. Факты, приготовленные для сообщения, в отличие от тех, которые воплощены в мысли или знании. Данные, но­вости, сведения, знания, полученные путем изучения или наблю­дения...». С точки зрения философии, информация — нематериальная сущность, при помощи которой с любой точностью можно описывать реальные (материальные), виртуальные (возможные) и понятийные сущности. Информация - противоположность неопределенности. Информация как физическая величина – количественная мера упорядоченности исследуемой системы. Все устройства передачи, отображения и хранения информации (в том числе и оптические) характеризуются данной количественной мерой.

Теория информации рассматривается как существенная часть кибернетики. Кибернетика — это наука об общих законах получения, хранения, передачи и переработки информации. Ее основной предмет исследования — это так называемые кибернетические системы, рассматриваемые абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем: автоматические регуляторы в технике, ЭВМ, мозг человека или животных, биологическая популяция, социум. Часто кибернетику связывают с методами искусственного интеллекта, т.к. она разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основными разделами (они фактически абсолютно самостоятельны и независимы) современной кибернетики считаются: теория информации, теория алгоритмов, теория автоматов, исследование операций, теория оптимального управления и теория распознавания образов.

Родоначальниками кибернетики (датой ее рождения считается 1948 год, год соответствующей публикации) считаются американские ученые Норберт Винер (Wiener, он — прежде всего) и Клод Шеннон (Shannon, он же основоположник теории информации).

                      А                                                        Б

Рис.39. Клод Шеннон (1916-2001 г.г.) (А), Норберт Винер (1894 - 1964 г.г.)(Б)

 

В наш век возрастающей дифференциации человеческих знаний Клод Шеннон является исключительным примером соединения глубины отвлеченной математической мысли с широким и в то же время совершенно конкретным пониманием больших проблем тех­ники. Его в равной мере можно считать одним из первых математи­ков и одним из первых инженеров последних десятилетий. Своеобраз­ная роль ему принадлежит в создании кибернетики. В отличие от Норберта Винера Шеннон не занимался пропагандой и системати­зацией этой новой науки. Но он создал основы теории информации и в значительной мере предопределил своими работами развитие общей теории дискретных автоматов, которые составляют две боль­шие главы кибернетики, занимающие в ней едва ли не центральное положение.

Теория информации тесно связана с такими разделами математики как теория вероятностей и математическая статистика, а также прикладная алгебра, которые предоставляют для нее математический фундамент. С другой стороны теория информации исторически и практически представляет собой математический фундамент теории связи. Часто теорию информации вообще рассматривают как одну из ветвей теории вероятностей или как часть теории связи. Теория информации представляет собой математическую теорию, посвященную измерению информации, ее потока, “размеров” канала связи и т. п., особенно применительно к радио, телеграфии, телевидению и к другим средствам связи.

 

Избыточность информации

 

Энтропия источника сообщений, как было показано К. Шенноном принимает максимальное значение Нmax, если его состояния равновероятны. Однако в реальных системах это условие не выполняется и Н < Нmax. Применительно к передаче сообщений ус­ловие H < Hmax означает, что   сообщения реального источни­ка могли бы нести большее количество информации. Например, можно вычислить, что максимальная энтропия русского алфавита (33 буквы) Hmax = log233 ≈ 5 бит/символ, а исходя из статистических данных по текстам - H = 4,35 бит/символ. В английском языке, с 26 буквами и одним пробелом, Hmax = log227 = 4.76 бит/символ. Конечно же, реальная энтропия английского языка много меньше абсолютной интенсивности – английский чрезвычайно избыточен. В реальном английском языке буквы не равновероятны (например, буква E встречается с большей вероятностью, чем Q). Используя относительные частоты различных букв для вычисления энтропии, мы получили бы оценку около 4,03 бита на символ.

Можно определить абсолютную недогрузку источника как , бит/символ. Вслучае D abs > 0 энтропия H передаваемого реального cобщения меньше максимально возможного ее значения. Следовательно, до проведения опыта у экспериментатора есть сведения об этом сообщении, то есть имеется некоторое количество априорной информации. Поэтому величину Dabs    называют абсолютной избыточностью информации, которая применительно к языку показывает недогруженност



Поделиться:


Последнее изменение этой страницы: 2021-03-10; просмотров: 104; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.88.132 (0.019 с.)