Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Физиологические гомеостатические механизмыСодержание книги
Поиск на нашем сайте
Эти механизмы, включающие функции легких, почек, желудочно-кишечного тракта, печени и костной ткани, обеспечивают нейтрализацию, связывание и выведение из организма Н+ и ОН" ионов в составе различных соединений, в зависимости от особенностей метаболизма и состояния буферных систем внутренней среды. 15.3.1. Легкие и кислотно-основное состояние Процессы газообмена между кровью и окружающим воздухом, происходящие в легких, обеспечивают регуляцию кислотно-основного состояния, поскольку внешнее дыхание — это основной путь удаления из крови летучей угольной кислоты. При физиологических условиях в покое в организме вырабатывается 10 ммоль/мин угольной кислоты, а выделяется через легкие 13 000—15 000 ммолей СО2 в сутки. Благодаря бикарбонатному буферу образующиеся при метаболизме кислоты не вызывают закисления крови, а приводят к увеличению содержания СО2 в крови с последующим удалением через легкие. Удаленный из плазмы углекислый газ немедленно восполняется за счет двух механизмов, происходящих в крови легочных капилляров. Во-первых, образование оксигемоглобина ведет к распаду карбаминовой связи гемоглобина и освобождению СО2 из эритроцитов; во-вторых, под влиянием карбангидразы, фермента, катализирующего реакцию: Н2СО3 Н2О + СО2 Количество выводимого из организма углекислого газа зависит от глубины и частоты дыхания, т. е. от альвеолярной вентиляции. Величина же альвеолярной вентиляции регулируется дыхательным центром, деятельность которого зависит или даже определяется парциальным напряжением СО2 в крови и pH внеклеточной жидкости мозга. Таким образом, усиление дыхания и альвеолярной вентиляции происходит при увеличении напряжения в крови СО2 и уменьшении pH. Нарастающее при этом удаление углекислоты через легкие приводит ее содержание в крови в соответствие с концентрацией бикарбоната. Следовательно, легкие выступают в роли физиологической гомеостатической системы, не только выводящей избыток летучей кислоты, но и восстанавливающей емкость буферных систем, прежде всего бикарбонатной и гемоглобиновой. При быстром поступлении во внутреннюю среду оснований вентиляция легких уменьшается и количество выделяемого СО2 существенно снижается. Концентрация углекислоты возрастает и pH поддерживается на исходном уровне.
15.3.2. Почки и кислотно-основное состояние Почки осуществляют выведение из внутренней среды организма нелетучих органических и неорганических кислот. Избыток кислот при этом может выводиться как в свободном состоянии, так и в виде нейтральных солей. Сильные неорганические кислоты выделяются из внутренней среды только через почки и только в связанной форме. В физиологических условиях почки выделяют кислую мочу, pH которой колеблется от 5 до 7. Однако, в зависимости от кислотно-основного состояния внутренней среды, моча может быть более кислой (pH 4,0) или даже щелочной (pH 8,0). Участие почек в регуляции кислотно-основного состояния внутренней среды обеспечивается совокупностью взаимосвязанных процессов, происходящих в структурах нефрона. К их числу относятся: 1) секреция водородных ионов в мочу клетками канальцевого эпителия, 2) реабсорбция (обратное всасывание) профильтровавшихся в мочу оснований, прежде всего бикарбоната, пополняющих резерв в крови, 3) образование в клетках эпителия канальцев ионов бикарбоната, больше или меньше всасываемого в кровь, 4) образование и диффузия в мочу аммиака, создающего катион аммония, присоединяя Н-ион, 5) фильтрация в первичную мочу из плазмы крови соединений, обладающих кислыми или щелочными свойствами, 6) обмен ионов СГ, Na+, К+, фосфатов, сульфатов и двухвалентных катионов (Са2+, Mg2+). Важнейшую роль в способности почек к выделению кислой мочи играет секреция водородных ионов клетками эпителия проксимальных и дистальных канальцев (рис. 15.2). Эта способность обусловлена наличием в клетках эпителия фермента карбоангидразы, обеспечивающего образование из СО2 и Н2О угольной кислоты, с последующей диссоциацией: н2о + со2 -> н2со3 н+ + нсо;. Ион водорода активно секретируется с затратой энергии через апикальную мембрану клетки эпителия в просвет канальца, а из канальцевой мочи в клетку диффундирует ион натрия, обеспечивая равновесие электрических зарядов. Из клетки, уже через базальную мембрану, Na+ активно с помощью Na-K-насоса удаляется в интерстиций и кровь, туда же пассивно по градиенту концентрации поступает НСО7 образуя бикарбонат натрия. Следовательно, секреция Н-ионов обеспечивает обратное всасывание бикарбоната и натрия, причем основная часть секретируемых ионов водорода тратится именно на обеспечение реабсорбции бикарбоната. Так, секретируемый Н-ион в просвете проксимального канальца взаимодействует с профильтровавшимся в мочу из плазмы ионом бикарбоната (в сутки около 5000 ммоль), образуя угольную кислоту. Под влиянием фермента карбоангидразы, встроенного в мембрану щеточной каемки клеток эпителия канальца, угольная кислота разлагается на СО2 и воду:
карбоангидраза Н+ 4- НСО7 -> Н2СО3 > СО2 + Н2О. Молекулы углекислого газа легко диффундируют в клетки, где реакция катализируется в обратном направлении. Таким образом, на суточ- Кружки обозначают мембранные транспортные системы. Первый фрагмент (сверху) — секреция Н+-ионов в мочу клетками эпителия проксимальных канальцев обеспечивает реабсорбцию профильтровавшегося в первичную мочу натрия и транспорт во внутреннюю среду бикарбоната натрия, что способствует сохранению нормального значения величины актуального бикарбоната крови. Второй (средний) фрагмент — секреция водородных ионов в мочу ведет к реабсорбции натрия из диссоциирующих солей неорганических кислот и появлению титруемых кислот мочи. Третий фрагмент — аммониогенез как путь выведения избытка Н+-ионов. Секретируемые эпителием в просвет канальца аммиак и Н-ионы взаимодействуют между собой и с ионом хлора, образуя экскретируемый хлорид аммония. ную реабсорбцию до 5000 ммоль бикарбоната расходуется эквивалентное количество секретированных ионов водорода. Выделяется же с мочой только 60 ммоль/сут ионов водорода, преимущественно в связанном виде. Наибольшая часть секретированных канальцами Н+ (65—75 %) участвуют в процессе аммониогенеза, обеспечивающего выведение из плазмы крови анионов сильных неорганических и органических кислот в виде аммонийных солей. Клетки проксимальных и дистальных почечных канальцев, благодаря процессам дезаминирования и дезамидирования аминокислот, образуют аммиак. Основным источником является глутамин, который дезаминируется под влиянием фермента глутаминазы, 40 % аммиака образуется из аминокислот аланина и глицина. Аммиак, благодаря высокой растворимости в липидах, легко диффундирует в просвет канальца, где присоединяет секретированные Н+ и образует ион аммония; NH3 + Н+ -» NH^. Ионы аммония вытесняют натрий из соединений с анионами сильных кислот, натрий реабсорбируется, а анионы кислот в виде аммонийных солей выделяются с мочой. Содержащиеся в крови кислые и щелочные компоненты буферных систем, например одно- и двухосновный фосфаты, бикарбонат, а также слабые органические кислоты — молочная, лимонная, р-оксимаслянная и др., так же как и анионы сильных неорганических кислот (СГ, SO^), фильтруются из плазмы крови в первичную мочу. Часть из них реабсорбируется в проксимальных канальцах, особенно существенно бикарбонат (до 80— 90 %), мочевая кислота (более 90 %). Но наряду с обратным всасыванием многие из указанных веществ, особенно органические кислоты и основания (холин), активно секретируются клетками канальцевого эпителия. Таким образом, уровень этих веществ в моче определяется соотношением трех основных процессов: клубочковой фильтрации, канальцевых реабсорбции и секреции.
Секретированные в мочу водородные ионы участвуют в образовании титруемых кислот мочи. Основную роль при этом играют фосфаты. Поскольку в плазме крови в 4 раза больше двухосновных фосфатов, поэтому и в первичную мочу их фильтруется соответственно больше. Под воздействием секретированного эпителием канальца Н-иона происходит перевод двухосновного фосфата в одноосновный, путем ионного обмена протона на натрий: Na2HPO4 + Н+ -> NaH2PO4 + Na+ Освобождаемый ион Na+ реабсорбируется в канальцах в кровь. Таким образом, этот процесс способствует сохранению во внутренней среде натрия и удалению из нее избытка Н+-ионов. Многие органические кислоты содержатся в плазме крови в виде солей и, фильтруясь в клубочках, поступают в первичную мочу. Под воздействием секретированных канальцами Н-ионов в моче происходит образование свободных слабых, т. е. плохо диссоциирующих, кислот, также составляющих титруемую кислотность мочи. Титруемой кислотностью мочи называют сумму Н-ионов слабых кислот и солей, определяемую путем титрования мочи щелочью до величины pH, равной pH крови. Эта величина показывает, насколько больше водородных ионов содержится в моче по сравнению с плазмой крови, т. е. насколько эффективно почки поддерживают постоянство pH. В клетках эпителия дистальных отделов нефрона кроме описанной выше секреции водородных ионов происходит секреция ионов К+, при этом ионы Н+ и К+ конкурируют в обмене на Na+. В связи с этим выведение калия и протона может изменяться противоположно друг другу. Так, при избытке водородных ионов секреция калия снижается, а при недостатке — возрастает. Напротив, избыток К+ снижает секрецию водородных ионов, а недостаток К+ повышает ее. Недостаток калия стимулирует и синтез аммиака в эпителиальных клетках канальцев для выведения избытка Н-ио- нов в виде аммонийных солей. Однако секреция протонов и калия связана с транспортом натрия и меняется пропорционально сдвигам реабсорбции натрия. При снижении дистальной реабсорбции натрия соответственно снижается секреция Н+ и К+ ионов, напротив, усиление всасывания натрия в дистальных канальцах приводит к повышению секреции калия и водородных ионов. При поступлении в кровь избытка кислот или оснований компенсация сдвига кислотно-основного состояния осуществляется прежде всего буферными системами крови, дыхательная компенсация формируется через 16— 18 ч, а почечная компенсация развивается еще медленнее — спустя 2— 3 сут. При этом почечные механизмы обладают значительной инерционностью и даже после удаления из организма избытка кислот или оснований возвращение к исходному кислотно-основному состоянию продолжается также около 2—3 сут.
15.3.3. Желудочно-кишечный тракт, печень, костная ткань и кислотно-основное состояние Характер питания человека и особенности пищеварения в значительной мере сказываются на кислотно-основном состоянии его внутренней среды, В пищевых продуктах растительного происхождения содержится большое количество солей органических кислот (щавелевой, яблочной, лимонной, янтарной и др.), после окисления которых и выведения кислотных валентностей с углекислотой через легкие остаются и накапливаются связанные с катионами щелочные валентности. Поэтому растительная пища способствует ощелачиванию внутренней среды, соответственно, основания в большем количестве выводятся с мочой, что увеличивает pH мочи и она может приобретать щелочную реакцию. Белковая пища животного происхождения способствует закислению внутренней среды, так как в составе животных белков содержатся сера и фосфор, что приводит к образованию сильных неорганических кислот. Повышенное выведение их с мочой приводит к снижению pH мочи и она приобретает резко кислую реакцию. Всасывание в желудочно-кишечном тракте кислот или щелочей, содержащихся в различных напитках, в том числе алкогольных и минеральных водах, также приводит к изменению кислотно-основного состояния внутренней среды. Сравнительно небольшую роль в регуляции кислотно-основного состояния играют пищеварительные функции желудка и кишечника. Париетальные клетки слизистой оболочки желудка секретируют соляную кислоту. Водородные ионы образуются в клетках под влиянием карбоангидразы, анион хлора поступает в клетки из хлористого натрия крови путем обмена на бикарбонат. Однако при этом ощелачивания крови не происходит, так как СГ желудочного сока в кишечнике всасывается обратно в кровь. Значительное количество бикарбонатов поступает в кишечник в составе сока поджелудочной железы и кишечного сока. При этом ионы Н+ всасываются в кровь. Обратное всасывание претерпевают и бикарбонатные ионы, поэтому сдвигов кислотно-основного состояния крови не происходит. При кислой диете увеличивается выделение двухвалентных катионов Са2+ и Mg2+ а при щелочной — и одновалентных катионов. Хотя значение желудочно-кишечного тракта в физиологической регуляции кислотно-основного состояния невелико, тем не менее при изменениях, а тем более нарушениях функций желудка и кишечника неизбежно происходят сдвиги и кислотно-основного состояния. Стойкое и резкое повышение кислотности желудочного сока может вести к увеличение щелочного резерва крови из- за потерь Н-ионов и избыточного всасывания бикарбоната. Частая рвота, особенно при непроходимости кишечника, вызывая потерю Н+-ионов и хлоридов, вызывает гипохлоремию и защелачивание внутренней среды, что требует обязательной врачебной коррекции. В печени происходит утилизация молочной кислоты с образованием гликогена, здесь разрушаются кетоновые тела (ацетоуксусная и бета-окси- масляная кислоты), происходят метаболические превращения органических кислот и оснований. Образуя желчь с изменяемой степенью щелочной реакции, печень способствует удалению из внутренней среды разных количеств оснований.
В нейтрализации кислот внутренней среды принимает участие костная ткань, поскольку в ней связано огромное количество катионов и фосфата. При длительном накоплении в крови кислот и снижении pH внеклеточной жидкости происходит остеолиз и вымывание из скелета фосфата кальция. В результате реакции с угольной кислотой образуются бикарбонатный и однозамещенный фосфатный анионы, нейтрализующие избыток Н-ионов. Благодаря огромным запасам в скелете фосфата кальция этот механизм обладает высокой эффективностью, выход из скелета 1 моль фосфата кальция нейтрализует и способствует в дальнейшем выведению из организма через почки 4 эквивалентов кислоты. Однако потеря костной тканью фосфата кальция вызывает деминерализацию скелета и потерю его прочности. В костной ткани находится до 45 % всего натрия, содержащегося в организме, однако выход натрия из костной ткани возможен только при резорбции кости, например, в условиях кислой реакции среды. В таких случаях натрий костей, поступая во внеклеточную среду, способствует нейтрализации кислотного сдвига.
|
|||||||||||||
Последнее изменение этой страницы: 2020-12-09; просмотров: 88; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.43.92 (0.011 с.) |