Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Геометрический смысл теоремы РолляСодержание книги
Поиск на нашем сайте
С геометрической точки зрения теорема Ролля означает, что график функции, непрерывной на отрезке [ a; b ], дифференцируемой на интервале (a; b) и принимающей на концах отрезка равные значения, имеет хотя бы одну точку с координатами (х 0 ; f (х 0)), где х 0Î (a; b), в которой касательная параллельна оси O x (рис. 7). Рис. 7 Теорема Лагранжа Теорема 5 (теорема Лагранжа). Если функция f (x) определена на отрезке [ a; b ] и выполнены следующие условия: · f (x) непрерывна на отрезке [ a; b ], · f (x) дифференцируема на интервале (a; b), то внутри этого отрезка существует хотя бы одна точка х 0, в которой выполняется равенство: f ' (х 0) = . Доказательство. Рассмотрим вспомогательную функцию F (x) = f (x) + l× x, где l = const. Потребуем, что бы для F (x) выполнялось условие F (a) = F (b). Так как F (a) = f (a) + l× a и F (b) = f (b) + l× b, то получим равенство: f (a) + l× a = f (b) + l× b. Отсюда выразим значение l: l = – . При этом значении l функция F (x) = f (x) – . Функция F (x) удовлетворяет всем условиям теоремы Ролля: · F (x) непрерывна на отрезке [ a; b ]: · F (x) дифференцируема на интервале (a; b) · F (a) = F (b). Следовательно, по теореме Ролля на интервале (a; b) существует хотя бы одна точка х 0, в которой выполняется равенство: F '(х 0) = 0. Найдём F '(x): F '(x) = f '(x) – . Поэтому F '(x 0) = f '(х 0) – = 0, если f '(х 0) = . Теорема доказана. Геометрический смысл теоремы Лагранжа С геометрической точки зрения теорема Лагранжа означает, что график функции, непрерывной на отрезке [ a; b ] и дифференцируемой на интервале (a; b), имеет хотя бы одну точку (х 0; f (х 0), в которой касательная параллельна секущей, проходящей через точки A (a; f (a)) и B (b; f (b)) (рис. 8)
Рис. 8 Теорема Коши Теорема 6 (теорема Коши). Если функции f (x) и g (x) определены на отрезке [ a; b ] и удовлетворяют условиям: · f (x) и g (x) непрерывны на отрезке [ a; b ]; · f (x) и g (x) дифференцируемы на интервале (a; b); · g '(x) ¹ 0 при любом x Î (a; b), то внутри отрезка [ a; b ] найдётся хотя бы одна точка х 0, в которой выполняется равенство: . Доказательство аналогично доказательству теоремы 5 (теорема Лагранжа) при вспомогательной функции F (x) = f (x) + l × g (x), где l = const, которую выбирают так, чтобы F (a) = F (b). Правило Лопиталя Теорема 7 (правило Лопиталя). Если функции f (x) и g (x) определены в некоторой окрестности точки х 0 и в этой окрестности они удовлетворяют условиям:
· f (x) и g (x) дифференцируемы в каждой точке за исключением может быть самой точки х 0; · g '(x) ¹ 0 для любого x из этой окрестности; · или , тогда, если существует конечный или бесконечный, то выполняется равенство: = . Замечание 1. Правило Лопиталя используется для раскрытия неопределённостей типа или , возникающих при вычислении пределов. Если под знаком предела оказывается неопределённость другого типа: 0×∞, , 10, 00 или ∞0, то с помощью тождественных алгебраических преобразований такая неопределённость приводится к или и тогда можно применить правило Лопиталя. Замечание 2. Если к условиям теоремы 7 добавить дифференцируемость функций f '(x) и g '(x) в окрестности точки х 0, то при выполнении остальных требований для f '(x) и g '(x) правило Лопиталя можно применить повторно. При этом будет справедливо равенство:
= = Пример 1. Вычислить предел: Пример 2. Вычислить предел: Пример 3. Вычислить предел: Пример 4. Вычислить предел: . Пример 5. Вычислить предел: Пример 6. Вычислить предел:
|
|||||
Последнее изменение этой страницы: 2020-12-09; просмотров: 204; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.138.214 (0.009 с.) |