![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Импульсная характеристика (весовая функция)Содержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
В качестве тестового сигнала можно, в принципе, использовать любой сигнал. Например, можно изучать реакцию системы на прямоугольный импульс. Вопрос в том, чтобы определить некоторый стандартный вид этого импульса. На рисунках а)-в) показаны три импульса, имею-щих одинаковые площади. Для простоты будем считать, что эта площадь равна единице. а) б) в) г)
δ (t)
0 t 0 t 0 t 0 t
Что будет, если мы будем уменьшать ширину импульса, сохраняя его площадь? Очевид-но, что высота импульса будет расти и в пределе (когда ширина стремится к нулю) станет бес-конечной. Таким образом, мы получили еще один классический тестовый сигнал – единичный импульс или дельта-функцию Дирака δ (t).Это идеальный(невозможный в реальной жизни)
сигнал, который равен нулю во всех точках, кроме t = 0, где он уходит к бесконечность, при-чем его площадь (интеграл по всей оси времени) равен единице:
Поскольку бесконечный импульс невозможно нарисовать, на графике он изображается стрел-кой, высота которой равна единице (см. рисунок г).
Иногда определяют дельта-функцию как производную от единичного ступенчатого сигна-ла 1 (t). Действительно, эта производная равна нулю при всех значениях t, кроме нуля, где она
обращается в бесконечность.
Реакция системы на единичный импульс (дельта-функцию) называется импульсной ха-
рактеристикой и обозначается w (t):
Импульсная характеристика, так же, как и переходная характеристика, определяется при нуле-вых начальных условиях, то есть, объект должен находиться в состоянии покоя.
Рассматривая дельта- функцию как предельный случай прямоугольного сигнала единич-ной площади, можно найти связь между переходной функцией и импульсной характеристикой. Пусть ширина прямоугольного импульса равна ε, а высота – 1/ ε. Такой импульс можно представить в виде разности двух ступенчатых сигналов
x (t)= ε 1 [ 1 (t)− 1 (t − ε)],
где 1 (t − ε) – это единичный ступенчатый сигнал, который приходит в момент t = ε, то есть, смещен по времени на ε (см. рисунок далее).
© К.Ю. Поляков, 2008
Так как для линейных систем справедлив принцип суперпозиции, сигнал на выходе будет равен разности реакций системы на входы 1 (t) и 1 (t − ε), умноженной на коэффициент 1/ ε. Учиты-
вая, что реакция на сигнал 1 (t) – это переходная функция h (t), получаем y (t)= ε 1 [ h (t)− h (t − ε)]. Переходя к пределу при ε → 0, наодим, что импульсная характеристика
как оказывается, равна производной от переходной функции. Наоборот, переходная функция – это интеграл от импульсной характеристики на интервале от 0 до t: h (t)=∫ t w (τ) dτ.
Дифференцируя переходную характеристику (17) звена первого порядка, получаем соот-ветствующую импульсную характеристику:
Другое название импульсной характеристики – весовая функция. Это название связано с тем, что для произвольного входного сигнала x (t) выход системы y (t) при нулевых начальных
условиях вычисляется как интеграл
Заметим, что импульсная характеристика дает неполную информацию об объекте, поскольку не учитывает ненулевые начальные условия.
В отличие от ступенчатого сигнала, мгновенный импульс бесконечной величины невоз-можно получить на реальном устройстве, поэтому снять импульсную характеристику системы, строго говоря, экспериментально не удается.
Передаточная функция
Вы уже знаете, выходной сигнал системы можно представить как результат действия не-которого оператора на ее вход. Для линейных моделей такой оператор можно записать сле-дующим образом.
Пусть модель объекта задана линейным дифференциальным уравнением второго порядка,
© К.Ю. Поляков, 2008 Введем оператор дифференцирования p = dtd, который действует на сигнал x (t) по пра- вилу p x (t) = dxdt (t). Обратите внимание, что запись p x (t) обозначает не умножение оператора p на x (t),а действие этого оператора,то есть дифференцирование x (t).
Теперь запишем производные сигналов x (t) и y (t) по времени в операторной форме
Можно формально вынести за скобки y (t) в левой части равенства (19) и x (t) в правой части:
уравнением (18). Она полностью описывает связи между выходом и входом объекта при нуле-вых начальных условиях, но не учитывает его внутреннее устройство.
Часто передаточной функцией называют функцию W (λ), которая получается из (22) в ре-
зультате замены оператора p на некоторую независимую переменную λ. Эта фукнция пред-ставляет собой отношение двух полиномов (многочленов) от λ.
Передаточная функция W (λ) называется правильной, если степень ее числителя не
больше,чем степень знаменателя; строго правильной,если степень числителя меньше степенизнаменателя; неправильной, если степень числителя больше, чем степень знаменателя. Напри-
точках λ = −1 и λ = −2.
3.6. Преобразование Лапласа 3.6.1. Что такое преобразование Лапласа?
Одна из первых задач, которые были поставлены в теории управления – вычисление вы-хода системы при известном входе. Мы видели, что для ее решения нужно решать дифференци-
© К.Ю. Поляков, 2008 альные уравнения. Чтобы упростить процедуру, математики придумали преобразование, кото-рое позволило заменить решение дифференциальных уравнений алгебраическими вычисле-ниями, то есть, операциями с полиномами (многочленами) и рациональными функциями.
Для функции f (t) вводится преобразование Лапласа, которое обозначается как L { f (t)}:
где j = На практике вместо интеграла (24) чаще всего используют готовые таблицы, по которым можно сразу определить изображение по оригиналу и наоборот. Например, изображения по Ла-
пласу для дельта-функции, единичного скачка и функции e − at равны, соответственно
3.6.2. Свойства преобразования Лапласа
Преобразование Лапласа имеет несколько замечательных свойств. Во -первых, используя (23) и (24), легко доказать, что принцип суперпозиции выполняется как для прямого, так и для обратного преобразования Лапласа:
Во-вторых, изображение для производной функции f (t) равно
L df (t) = s ⋅ F (s)− f (0),
dt
где F (s) – изображение функции f (t), и f (0) – ее значение5 при t = 0. Поэтому при нулевых
начальных условиях изображение производной равно изображению самой функции,умножен-ному на s. Аналогично для построения изображения i -ой производной нужно умножить изо- бражение функции на si (это также справедливо только при нулевых начальных условиях). Кроме того, с помощью преобразование Лапласа можно сразу найти начальное и конеч-
ное значения функции-оригинала(при t =0и t →∞),не вычисляя самого оригинала:
3 Преобразование Лапласа определяется для функций ограниченного роста, таких что f (t) < Meαt, где M и α – постоянные, и α называется показателем роста функции f (t). Для всех s, вещественная часть которых боль-
ше α (в области Re s > α) функция f (t) e − st затухает при t → ∞ и интеграл (23) сходится.
4 Постоянная σ должна быть больше, чем показатель роста α функции-оригинала f (t). При этом можно пока-зать, что значение интеграла (24) не зависит от выбора σ. 5 Если функция имеет разрыв при t = 0, нужно брать предел слева, то есть ее значение при бесконечно малом от-рицательном t.
Применим к левой и правой частям преобразование Лапласа, считая, что все начальные условия нулевые. Получается уравнение в изображениях, связывающее преобразования Лапласа входа X (s)и выхода Y (s):
Сравнение (22) и (30) показывает, что W (s) – это передаточная функция объекта, записанная в виде функции от комплексной переменной s, а не от оператора дифференцирования p, как
в (22).
Таким образом, при нулевых начальных условиях изображение выхода линейного объек-
та вычисляется как произведение его передаточной функции на изображение входного сигна-ла. Из (30) следует и другой важный вывод: передаточная функция равна отношению изо-бражений по Лапласу выхода и входа при нулевых начальных условиях.
3.6.4. Пример
Рассмотрим пример использования преобразования Лапласа для вычисления выхода сис-темы при известном входном сигнале. Пусть объект управления описывается уравнением пер-вого порядка (16):
и на его вход поступает единичный ступенчатый сигнал x (t) = 1 (t). Требуется найти сигнал вы-хода y (t), который в данном случае представляет собой переходную характеристику. Решим эту задачу с помощью передаточных функций и изображений сигналов по Лапла-су. Чтобы найти изображение выхода по формуле (30), нужно знать изображение входного сиг-нала X (s) и передаточную функцию звена W (s). Изображение входа находим по табличным
данным (см. (25)), а передаточную функцию – из (31), повторяя приведенные выше рассужде-ния:
Теперь находим изображение выхода
Y (s)= 1 s ⋅ Tsk +1= k s − TskT +1.
и представляем его в виде суммы элементарных дробей:
Y (s)= k s − s + k 1/ T. Используя принцип суперпозиции для изображений (27), вычисляем оригинал – сигнал выхода:
Обратные преобразования Лапласа находим по таблице (25):
© К.Ю. Поляков, 2008
что совпадает с (17). Таким способом можно вычислять реакцию системы на известный вход-ной сигнал без прямого решения дифференциального уравнения. Применяя формулы (28) для вычисления начального и конечного значений сигнала выхо-
Значение W (0) называют статическим коэффициентом усиления звена, поскольку он пока-зывает, во сколько раз усиливается постоянный сигнал.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-06; просмотров: 817; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.209.163 (0.011 с.) |