Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ферромагнетизм: основные особенности, параметры, области использования

Поиск

Ферромагнетиками называют особый класс веществ, отличающихся не только очень большой магнитной восприимчивостью (о чем мы уже говорили), но и рядом других особенностей.

Первой из них является нелинейный характер зависимости намагниченности от напряженности внешнего магнитного поля.

В обычных парамагнетиках (и диамагнетиках по сути дела тоже) в соотношении (19.17) магнитная восприимчивость является константой при весьма больших изменениях напряженности магнитного поля . Поэтому график зависимости имеет вид, показанный на рисунке 19.5 а.

Аналогичный график для ферромагнетика показан на рисунке 19.5 б. Отметим, что в силу большой восприимчивости ферромагнетиков, на одном графике изобразить обе зависимости практически невозможно. Поэтому график в нижней части рисунка (для парамагнетика) должен практически слиться с осью абсцисс.

Показанный на рисунке 19.5 б график, на котором в исходном состоянии ферромагнетик не имеет намагниченности называется основной кривой намагничения.

Второй особенностью является наличие гистерезиса на зависимости . Гистерезисом (дословный перевод - запаздывание) называют отставание изменения от изменения (рисунок 19.65). Если при намагничивании достигнуто насыщение зависимости , то при последующем уменьшении внешнего поля уменьшение намагниченности происходит медленнее по сравнению с изменением напряженности поля при ее нарастании. (Насыщением называется такой характер зависимости некоторой величины, при котором дальней шее увеличение абсциссы не вызывает изменения ординаты). При обращении внешнего поля в ноль, ферромагнетик остается намагниченным. Его намагниченность в этом случае называется остаточной. Для ее удаления ферромагнетик необходимо поместить в поле с противоположной ориентацией. Величина поля, обращающая остаточную намагниченность в ноль, называется коэрцитивной силой. При увеличении поля противоположного направления намагниченность достигает насыщения, и при уменьшении поля ферромагнетик остается намагниченным в соответствии с его направлением при достижении насыщения.

В переменном поле зависимость следует пунктирной кривой, которую называют петлей гистерезиса. В зависимости от величины коэрцитивной силы, которая отражается на петле гистерезиса ее шириной, ферромагнетики делят жесткие – с широкой петлей гистерезиса, т.е. с большой коэрцитивной силой (а), и мягкие, с узкой петлей и небольшой коэрцитивной силой (б). Предельным выражением жестких ферромагнетиков являются ферромагнетики с прямоугольной петлей гистерезиса (в).

Форма петли гистерезиса во многом определяет область применения данного ферромагнетика. Жесткие ферромагнетики устойчивы к влиянию внешних полей, и их используют для создания постоянных магнитов и магнитной памяти. Мягкие – в устройствах, работающих в переменных полях, например, трансформаторах. Следует иметь в виду, что площадь петли гистерезиса пропорциональна энергии, выделяющейся в ферромагнетике за один цикл перемагничивания. Поэтому в переменном поле жесткий ферромагнетик будет интенсивно разогреваться.

Магнитная проницаемость ферромагнетиков зависит от величины внешнего поля и достигает максимального значения вблизи насыщения. Максимальное значение магнитной проницаемости, остаточная намагниченность и величина коэрцитивной силы являются основными параметрами ферромагнетика. Именно эти величины определяют качество ферромагнетика и область его использования.

Природа ферромагнетизма

 

Природа ферромагнетизма весьма сложна и связана с квантовомеханическим описанием свойств твердых тел. В кристаллах ферромагнетиков между атомами возникает специфическое обменное взаимодействие, которое стремится установить магнитные моменты атомов в одном направлении жесткому выстраиванию магнитных моментов противостоит тепловое движение, которое вносит хаос в распределение магнитных моментов атомов по направлениям. С понижении температуры (напомним, что при высоких температурах ферромагнетик находится в парамагнитном состоянии) при определенной температуре (температуре Кюри), характерной для кристаллов данного состава, обменное взаимодействие начинает преобладать. Магнитные моменты атомов ферромагнетика выстраиваются в определенном направлении, кристалл самопроизвольно намагничивается. Этот процесс называют возникновением спонтанной намагниченности.

Реально описанный процесс не наблюдается. Это связано с тем, что при выстраивании в определенном направлении всех магнитных моментов атомов, образец кристалла создавал вы в окружающем пространстве сильное магнитное поле. С полем связана энергия, и такое состояние оказывается энергетически невыгодным. Поэтому кристалл разбивается на небольшие области, в пределах которых магнитные моменты атомов действительно параллельны, и намагниченность максимальна. Эти область называются доменами.

Разбиение кристалла на домены происходит хаотично, но таким образом, что магнитные силовые линии расположенных вблизи доменов замыкаются так, что область существования магнитного поля становится минимальной. Уменьшается и энергия, связанная с ним. Таким образом, разбиение на домены означает переход в энергетически более выгодное состояние. Идеализировано эта ситуация представлена на рисунке 19.9.

Однако с границами доменов связана дополнительная энергия, и состояние с очень маленькими доменами оказывается энергетически невыгодным. Поэтому кристалл переходит в энергетически оптимальное состояние, в котором размеры доменов составляют от одного до десяти микрон. Важно при этом, что в пределах домена кристалл предельно намагничен. Поэтому внешнему полю достаточно сместить границы доменов, и возникнет очень большая намагниченность. Смещение границ доменов с увеличение напряженности внешнего поля схематически показано на рисунке. В больших полях кристалл переходит в монодоменное состояние. Вблизи насыщения основной кривой намагнничения намагниченность одного домена поворачивается в направлении внешнего поля. После завершения этого процесса дальнейшее существенное увеличение намагниченности оказывается невозможным, зависимость насыщается.

При повышении температуры кристалла до температуры Кюри, т.е. температуры возникновения спонтанной намагниченности, тепловое движение разрушает магнитную упорядоченность, разрушается спонтанная намагниченность, исчезают домены, кристалл становится парамагнетиком. В этом состоянии магнитная восприимчивость продолжает уменьшаться с ростом температуры по закону Кюри-Вейсса:

,

 

где – характерная для вещества константа Кюри-Вейсса, а – температура Кюри.


ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 488; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.119.77 (0.011 с.)