Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Виды погрешностей измерений и их оценка.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Погрешность измерения — оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения. Определение погрешности В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы. · Метод Корнфельда, заключается в выборе доверительного интервала в пределах от минимального до максимального результата измерений, и погрешность как половина разности между максимальным и минимальным результатом измерения: · Средняя квадратическая погрешность: · Средняя квадратическая погрешность среднего арифметического:
Виды представления: По способу измерения · Погрешность прямых измерений - вычисляется по формуле где: ; — стандартная ошибка среднего (выборочное СКО, деленное на корень из количества измерений ), а — квантиль распределения Стьюдента для числа степеней свободы и уровня значимости ; — абсолютная погрешность средства измерения (обычно это число равное половине цены деления измерительного прибора). · Погрешность косвенных воспроизводимых измерений — погрешность вычисляемой (не измеряемой непосредственно) величины: Если , где — непосредственно измеряемые независимые величины, имеющие погрешность , тогда: · Погрешность косвенных невоспроизводимых измерений - вычисляется по принципу прямой погрешности, но вместо ставится значение полученное в процессе расчётов. Погрешность измерения и принцип неопределенности Гейзенберга Принцип неопределенности Гейзенберга устанавливает предел точности одновременного определения пары наблюдаемых физических величин, характеризующих квантовую систему, описываемых не коммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Таким образом, в квантовой механике постулируется принципиальная невозможность одновременного определения с абсолютной точностью некоторых физических величин. Этот факт накладывает серьёзные ограничения на применимость понятия «истинное значение физической величины. Корреляционный и регрессивный анализ. Функциональная и корреляционная зависимость. Корреляционный анализ — метод обработки статистических данных, с помощью которого измеряется теснота связи между двумя или более переменными. Корреляционный анализ тесно связан с регрессионным анализом (также часто встречается термин «корреляционно-регрессионный анализ», который является более общим статистическим понятием), с его помощью определяют необходимость включения тех или иных факторов в уравнение множественной регрессии, а также оценивают полученное уравнение регрессии на соответствие выявленным связям (используя коэффициент детерминации). [1][2] Область применения Данный метод обработки статистических данных весьма популярен в экономике и социальных науках (в частности в психологии и социологии), хотя сфера применения коэффициентов корреляции обширна: контроль качества промышленной продукции, металловедение, агрохимия, гидробиология, биометрия и прочие. В различных прикладных отраслях приняты разные границы интервалов для оценки тесноты и значимости связи. Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных. Регрессио́нный (линейный) анализ — статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную . Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных, а не причинно-следственные отношения. Цели регрессионного анализа 1. Определение степени детерминированностивариации критериальной (зависимой) переменной предикторами (независимыми переменными) 2. Предсказание значения зависимой переменной с помощью независимой(-ых) 3. Определение вклада отдельных независимых переменных в вариацию зависимой Регрессионный анализ нельзя использовать для определения наличия связи между переменными, поскольку наличие такой связи и есть предпосылка для применения анализа.
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 755; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.192.196 (0.006 с.) |