Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Последствия нарушений адренергической и холинергической рецепцииСодержание книги
Поиск на нашем сайте
Таблица 3
3.3.2.СПОЛ. Во всех живых организмах постоянно образуются так называемые «активированные кислородные метаболиты» (АКМ) (Рис.3). Рис.3 Они осуществляют ряд жизненноважных функций, регулируя интенсивность окислительно-восстановительного метаболизма, клеточного ответа на различные информационные сигналы, липидный состав биомембран и активность мембраносвязанных ферментов, процессы клеточной пролиферации и дифференциациии, фагоцитоз. Процесс универсального эндогенного повреждения - СПОЛ начинается с избыточного образования АКР - активных кислородных радикалов: супероксидного анион радикала (О-2), синглетного кислорода (1О2), перекиси водорода (Н2О2), гидроксильного радикала (НО•), пероксинитрита (ОΝОО) и др. Избыточная генерацияАКР индуцируется самыми разнообразными экзогенными факторами: ядами, токсинами микроорганизмов, лекарственными препаратами, гипероксией, повышенной температурой, ионизирующей радиацией, ультрафиолетовым облучением, магнитными полями и т.п. АКР отнимают электроны у различных органических молекул, запуская цепной процесс свободнорадикального перекисного окисления липидов, белков и нуклеиновых кислот. Главным субстратом СПОЛ является арахидоновая жирная кислота, входящая в состав фосфолипидов клеточных мембран. В ходе СПОЛ образуются многочисленные липопероксиды, дополнительно повреждающие биомембраны с образованим в них микроразрывов и простейших неуправляемых каналов. АКР и липопероксиды также сшивают белки через их сульфгидрильные группы, инактивируя ферменты и рецепторы. В ДНК они вызывают мутагенез с последующим цитостатическим, тератогенным и канцерогенным эффектами. Процессы пероксидации становятся разрушительными при несостоятельности антиоксидантной защиты клетки. 3.3.3.Чрезмерная активация фосфолипазы А2 приводит к похожим на СПОЛ последствиям. В физиологических условиях этот мемраносвязанный фермент умеренно активен и обеспечивает образование из арахидоновой кислоты внутриклеточных мессэнджеров - простагландинов и лейкотриенов. Его каталитическая активность резко возрастает при повышенном внутриклеточном входе ионов Са, вызванном гипоксией. В результате в мембранах накапливается большое количество неутилизируемых метаболитов - гидроперекисей липидов, свободных жирных кислот и фосфолипидов (глицерофосфолипиды, фосфатидилхолины и др.). Благодаря своей амфифильности эти соединения фиксируются как в гидрофобной, так и в гидрофильной зоне мембран. Обладая детергентными - поверхностно активными свойствами они разрушают мембраны в виде микроразрывов и неуправляемых каналов. 3.3.4.Цитотоксические факторы системы ИБН - иммунобиологического над зора в норме уничтожают инфекты, собственные погибшие, отжившие, антигеннои змененные и мутантые клетки. К ним относятся цитотоксические медиаторы иммунных клеток: пероксиды, интерлейкины, гидролазы и др. и мембраноатакующие фрагменты комплемента (С3b5,6,7,8,9 и С5,6,7,8,9). Патологическая активация этих агрессивных факторов происходит в ходе реализации аутоиммунных и аутоаллергических заболеваний, когда они повреждают собственные клетки и, прежде всего, их мембраны. При этом в мембранах образуются микроразрывы и неуправляемые каналы. 3.3.5.Органические (липопероксиды, метаболиты, ферменты и др.) и неорганические ионы (Са, Na, К, Н) накапливаются в клетках при расстройствах метаболизма, а в интерстиции - при гибели клеток. Ферменты, детергенты и пероксиды напрямую разрушают структуры соседних интактных клеток и межклеточного вещества. Избыточные органические и неорганические электролиты, грубо изменяя параметры рН, вызывают конформационные изменения структур мембран, межклеточного вещества и ферментов, нарушая их функции. Экстремальные изменения осмотического давлениявызывают механические разрывы мембран клеток и субклеточных структур. 3.3.6..Гипоксия или кислородное голодание клеток может проявлять себя как фактор альтерациии и, одновременно, как универсальный процесс, развивающийся в клетке из-за дефицита биологического окислителя – О2. По своему происхождению она может быть экзогенной, эндогенной и смешанной. Экзогенная гипоксия вызывается ухудшением поступления кислорода извне, сопровождаясь гипоксемией (снижением О2 в крови) и гиперкапнией (повышением СО2 в крови). Наиболее распространенными ее вариантами являются гипоксическая, гипобарическая и респираторная гипоксия. Гипоксическая гипоксия - результат снижения концентрации кислорода во вдыхаемом воздухе при нормальном атмосферном давлении в замкнутых пространствах с плохой вентиляцией. Гипобарическая гипоксия – результат снижения концентрации кислорода во вдыхаемом воздухе при пониженном атмосферном давлении, например, в условиях высокогорья. Респираторная гипоксия – результат ухудшения внешнего дыхания и может развиваться по следующим причинам: ♦- при угнетении нейронов дыхательного центра алкоголем, эфиром, хлороформом, снотворными препаратами; ♦- при пневмотораксе и закупорке дыхательных путей инородными телами; ♦- при спазме и отеке бронхов; ♦- при патологических процессах в паренхиме легких, уменьшающих их жизненную емкость (например, воспалении легких). Эндогенная гипоксия вызывается нарушениями транспорта кислорода кровью и использования его в окислительном метаболизме клетками. Ее вариантами являются гемическая, циркуляторная и тканевая гипоксия. Гемическая гипоксия развивается: ♦- при нарушениях эритропоэза и повышенном гемолизе эритроцитов (анемии); ♦- при ухудшении связывания О2 гемоглобином (например, при отравлении СО, степень связывания которого с гемоглобином в 300 раз выше, чем у кислорода); ♦- при конкурентной блокаде связывания О2 метгемоглобинообразователями, в том числе и лекарственными - нитритами, нитратами, фенацетином и др. Циркуляторная гипоксия развивается при многочисленных нарушениях кровообращения, сопровождающихся снижением доставки крови с кислородом к клеткам. Она может носить распространенный характер, например, при сердечной недостаточности и гипертонической болезни. Она может быть и локальна, например, при тромбозе или спазме сосуда, питающего этот участок ткани. Тканевая гипоксия развивается в результате нарушений использования О2 клеткой в биологическом окислении: ♦- при прямом подавлении активности ферментов биологического окисления специфическими ингибиторами (например, анионы СΝ, ингибирующие цитохромоксидазу); ♦- при неспецифическом ингибировании ферментов биологического окисления катионами металлов: Ag, Hg, Cu; ♦- при торможении синтеза ферментов биологического окисления (например, при белковой недостаточности); ♦- при нарушениях рН в клетке, изменяющих конформацию ферментов и соответственно, снижающих их активность; Гипоксия развивается также в результате физических перегрузок, когда резко возросшая потребность в кислороде не обеспечивается даже максимально активированным его снабжением. Несмотря на разную этиологию приведенных вариантов гипоксии, они имеют весьма схожий внутриклеточный патогенез. Наиболее важными его метаболическими характеристиками являются: ♦- снижение активности аэробного – митохондриального энергообразования и интенсификация анаэробного синтеза макроэргов; ♦- накопление недоокисленных продуктов обмена: преимущественно пировиноградной (ПВК) и молочной (МК) кислот, формирующих ацидоз (лактатацидоз); ♦- подавление активности ферментов окислительно-восстановительного метаболизма; ♦- чрезмерная активация мембраносвязанных фосфолипаз. Метаболические расстройства опосредуют дальнейшее возникновение структурной патологии – мембранных кластеров и микроразрывов с последующим уменьшением ионных градиентов, набуханием клети и ее ультраструктур. Функциональные нарушения характеризуются снижением специфической рабочей активности клетки. Степень выраженности этих расстройств при гипоксии варьирует от обратимых до необратимых – летальных. Последние обусловлены прекращением синтеза АТФ, исчезновением ионных градиентов, выходом в цитозоль лизосомальных ферментов и аутолизом клетки. Наиболее уязвимыми к гипоксии являются высокоаэробозависимые клетки: нейроны ЦНС, затем клетки крови, эпителий почек и слизистых, миокардиоциты. Наименее чувствительны к гипоксии скелетные миоциты, а наиболее резистентны - хондроциты и остеоциты. Результатом альтерации вышеуказанными факторами (3.3.2 – 3.3.6) клеточных и субклеточных мембран является их функциональная несостоятельность в виде мембранопатий, последствия которых рассмотрены в разделе 3.5.
Ультраструктурная патология Экзогенная и эндогенная альтерация сопровождается рядом стандартных - типовых нарушений в деятельности разных ультраструктур клетки. 3.5.1. Мембранопатии ПМ проявляются в виде функциональных «мягких» нарушений, вызванных недостатком или избытком регуляторных сигналов и структурных нарушений в виде мембранных микроразрывов и кластеров в ходе их «жесткой» альтерации. Во всех случаях повреждения ПМ развивается цепь взаимосвязанных последствий в виде: ♦- недостаточности функций ионных насосов и каналов; ♦- утраты физиологических трансмембранных градиентов; ♦- избыточного входа в клетку ионов натрия и воды; ♦- избыточного входа ионов кальция в клетку; ♦- набухания клетки; ♦- активации мембранных фосфолипаз; ♦- образования эйкозаноидов из арахидоновой кислоты; ♦- нарушений метаболизма и функций клетки. Универсальные последствия «мягкой» альтерации наиболее ярко проявляются в клетках возбудимых тканей: нервной и мышечной - усилением или ослаблением их деятельности. Например, функциональное снижение активности Na, K-насоса ПМ сопровождается повышением внутриклеточного входа ионов Na и клетки становятся более возбудимыми. Они быстрее деполяризуются и становятся источником патологических электрических разрядов. Такие разряды в корковых двигательных нейронах, нередко вызывают судорожные припадки, а в миокарде - внеочередные сокращения отделов сердца – экстрасистолы. Снижение активности Са-насоса ПМ сопровождается повышением внутриклеточного входа ионов Са. В миоцитах они избыточно активируют миозин (Mg-зависимую, Са-активируемую миозиновую АТФ-азу), стимулируя их сокращение, но тормозя релаксацию (расслабление). В сердечном цикле такое явление формирует неполную диастолу с последующим снижением объема систолического выброса, в резистивных сосудах – повышение их тонуса и гипертензию, в бронхах – тонический спазм мускулатуры и астму (удушье). Чрезмерный вход ионов Са в нейроны стимулирует выброс ими в синаптическую щель избытка нейромедиаторов, что может существенно изменить нормальное функциионирование исполнительных клеток и стать патогенным. Ионы Са являются также универсальными активаторами мембраносвязанных ферментов - фосфолипаз А, осуществляющих гидролиз мембранных фосфолипидов с высвобождением из них свободной арахидоновой кислоты. Эта жирная кислота служит источником БАВ - эйкозаноидов, играющих в клетке роль вторичных метаболических и функциональных мессэнджеров. В физиологических условиях эйкозаноиды никогда не накапливаются в клетках, всегда синтезируясь по мере сияминутной надобности. При избыточном же образовании они экспортируются за пределы клетки, где функционируют как локальная медиаторная система немедленной клеточной реакции на повреждение. В зависимости от концентрации медиаторные эффекты эйкозаноидов могут носить как защитный, так и повреждающий характер. Например, в невысокой концентрации простагландины - PGЕ2 и простациклин (PGl2) расширяют артериолы и увеличивают локальный кровоток, улучшая питание клеток и тканей. В высокой концентрации PGЕ2 повышает капиллярную проницаемость для белков плазмы, способствуя образованию внеклеточного отека, а в костной ткани он же ститмулирует декальцификацию костей и развитие остеопороза. Медиаторные эффекты эйкозаноидов могут различаться в зависимости от места их образования. Например, в очаге воспаления лейкотриены активируют положительный хемотаксис лейкоцитов, обеспечивая, таким образом, локальную антибактериальную защиту, но они же вызывают бронхоспазм у астматиков и коронароспазм у больных ишемической болезнью сердца. Спектр эйкозаноидов, производимых разными клетками в ответ на одно и тоже повреждение, сильно отличается. Он также варьирует в одних и тех же клетках в зависимости от активности оксигеназ и доступности их исходного субстрата – арахидоновой кислоты. Например, у индивидов с дефектом циклооксигеназы, употребление пищевых продуктов богатых насыщенными жирными кислотами, смещает равновесие арахидоновых каскадов в сторону производства лейкотриенов. Лейкотриены инициируют бронхоспазм и удушье, что часто ошибочно трактуется как пищевая аллергия. Наоборот, пополнение диеты ω-3 ненасыщенными жирными кислотами повышает продукцию арахидоновых метаболитов с антисклеротическими, антиагрегационными (антитромботическими) свойствами, что рекомендуется превентивной (профилактической) медициной. Стандартным результатом «жесткой» мембранной альтерации является неконтролируемый поток в клетку и из нее органических и неорганических субстратов. При чрезмерном внутриклеточном поступлении этих веществ повышается осмолярность цитоплазмы и, по этому осмотическому градиенту в клетку из интерстиция перемещается вода. Развивается клеточная гипергидратация, сопровождающаяся набуханием самой клетки, всех ее ультраструктур и, финально, их разрывом и лизисом. Подобная картина наблюдается также при полном и необратимом прекращении деятельности мембранных ионных насосов ПМ. Мембранопатии гладкого эндоплазматического ретикулума (ГЭР) сопровождаются инактивацией мощного мембраносвязанного ферментного комплекса, представляющего собой дезинтоксикационную систему клетки. Недостаточная активность ее энзимов - цитохром Р450-содержащих оксидаз, ухудшает обезвреживание эндогенных биорегуляторов, токсичных метаболитов и ксенобиотиков (в том числе лекарств). Снижается также активность ферментов гликолиза (бескислородного этапа метаболизма глюкозы) и синтеза углеводов и жиров. Мембранопатии шероховатого эндоплазматического ретикулума (ШЭР) сопровождаются отсоединением от них рибосом. В результате нарушается транспортировка белков от места их сборки. Накапливаясь в цитоплазме, белки повышают ее онкотическое давление и способствуют внутриклеточной гипергидратации – отеку. Мембранопатии пластинчатого комплекса Гольджи сопровождаются нарушением «упаковки и маркировки» (гликозилирования и фосфорилирования) синтезированных на рибосомах белков, а также их транспортировки по внутриклеточным маршрутам и на экспорт. В виде различных сложных комплексных соединений - мукополисахаридов и липопротеидов белки накапливаются в лизосомах, которые образуются здесь же в пластинчатом комплексе. Дальнейшее использование белковых продуктов затрудняется, что способствует формированию, так называемых, болезней накопления (лизосомальных болезней). При этой патологии в первую очередь страдают наиболее зависимые от белковых субстратов клетки – нейроны и макрофаги, что на организменном уровне чаще всего проявляется нарушениями психомоторного развития и иммунитета. Мембранопатии лизосом сопровождаются выходом в цитозоль пероксидов и более 40 ферментов, вызывающих аутолиз клетки и субклеточных структур. Мембранопатии митохондрий сопровождаются набуханием органоидов и снижениемаэробного синтеза главной «энергетической валюты» клетки – АТФ. Это сопровождается ухудшением всех видов функциональной активности субклеточных структур и самой клетки. Ослабление биологического окисления в митохондриях происходит не только при их прямом повреждении, но и в результате снижения активности их окислительно-восстановительных ферментов: например, при дефиците витаминов (В2, РР, Q10) и микроэлементов (Fе, Сu) или действии ингибиторов ферментов тканевого дыхания – мочевины, сероводорода, сульфитов, цианидов и др. Наконец, мутации в митохондриальных генах, кодирующих полипептиды ферментов, вызывают ферментопатии и этим разрывают цепь биологического окисления, формируя «митохондриальные болезни». В конечном счете, любой вариант повреждения митохондрий и дефекты окисления субстратов неизбежно ведут к энергодефициту и снижению функционального потенциала клеток. 3.5.2. Повреждения цитоскелета происходят всегда при клеточной альтерации, придавая свою специфику формирующейся патологии. Наиболее ранимым элементом цитоскелета являются промежуточные филаменты, которые, фиксируя органоиды в цитоплазме, обеспечивают им связь между собой, а также с ядерной и плазматической мембраной. Разрушение промежуточных филаментов нарушает форму клеток и все способы их движения. Страдает внутриклеточное перемещение органоидов (например, хромосом при митозе) и включений (например, гранул с медиаторами к синаптичнской щели). Нарушается распространение сигналов управления и расстраивается метаболизм клетки. Ослабление межклеточных контактов способствует метастазированию (в злокачественных опухолях). Падает активность фагоцитоза, пиноцитоза и хемотаксиса клеток. Повреждения актиновых и миозиновых филаментов вызывают нарушения процесса сокращение – расслабление и поддержания мышечного тонуса. 3.5.3. Повреждения ядерных рецепторов, которые связаны со специфическими последовательностями ДНК, сопровождаются нарушениями ее транскрипции. В результате страдает синтез структурных и ферментных белков, что опосредует дальнейшие структурные и метаболические расстройства в клетке. Однонитевые разрывы и мутации ДНК являются достаточно «нежными» и немедленно активируют ряд типовых защитных механизмов, исправляющих до 95% ее дефектов. Если все же эти дефекты не устраняются, или возникают в самих механизмах защиты, то развивается наследственная (гаметическая) или ненаследственная (соматическая) генетическая патология. Двунитевые разрывы ДНК и более грубые повреждения клеточного ядра - конденсация его хроматина – кариопикноз, распад на глыбки – кариорексис и растворение - кариолизис - являются для клетки летальными.
|
|||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2017-02-08; просмотров: 322; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.250.160 (0.01 с.) |