Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Условие термодинамического равновесия в раствореСодержание книги
Поиск на нашем сайте
Взаимосвязь между энергией Гиббса раствора и химическими потенциалами отдельных компонентов описывается уравнением (2.3): Приняв, что химический потенциал является постоянной величиной, проинтегрируем полученное уравнение: Продифференцируем теперь при условии переменных массы раствора и его состава: При равновесии dG = 0, тогда , следовательно, . Разделим на : , (2.4) где – мольная доля i -го компонента. Уравнение (2.4) – уравнение Гиббса-Дюгема – является условием равновесия в гомогенном многокомпонентном растворе. Для двухкомпонентного раствора условие равновесия имеет вид: . Условие равновесия в гетерогенной системе Рассмотрим систему, состоящую из k независимых компонентов и m фаз, находящуюся в состоянии термодинамического равновесия при р, Т = const. Общее условие равновесия в системе имеет вид: dG = 0. Общая энергия Гиббса складывается из энергий Гиббса каждой из фаз: . Продифференцируем: . Для каждой из фаз . Подставим значение dG для каждой фазы: Пусть без нарушения равновесия из первой фазы во вторую перешло бесконечно малое число моль 1-го компонента. При этом числа моль всех остальных компонентов постоянны во всех фазах и значения внешних параметров не изменяются: р, Т = const. Тогда условие равновесия приобретает вид: Произведение равно нулю, если хотя бы один из множителей равен нулю, но согласно условию , тогда Следовательно, химический потенциал первого компонента одинаков в обеих фазах. Рассматривая аналогичные частные случаи для других компонентов и фаз, получим: Полученное уравнение является условием равновесия в m -фазной условием термодинамического равновесия в гетерогенной системе является равенство химических потенциалов каждого компонента во всех фазах при Р, Т = const или V, Т = const В качестве примера рассмотрим двухфазную трехкомпонентную систему. Условие равновесия для такой системы имеет вид: , где – химические потенциалы 1, 2 и 3-го компонентов в одной фазе; – химические потенциалы 1, 2 и 3-го компонентов в другой фазе. Правило фаз Гиббса
Пусть при р, Т = const в состоянии равновесия существует система, состоящая из k компонентов и m фаз. На систему оказывают влияние s внешних параметров (на практике обычно s = 2 – это р и Т). Поставим задачу рассчитать число термодинамических степеней свободы данной системы.
Число термодинамических степеней свободы – это число независимых параметров состояния данной системы, оно равно общему числу параметров состояния системы за вычетом числа уравнений, связывающих эти параметры. Для определения состава любой фазы, содержащей k компонентов достаточно указать содержание (k – 1) компонентов. Так как концентрации компонентов обычно выражены в массовых или мольных долях и концентрация одного из компонентов будет определена, если известны концентрации остальных компонентов. Например, двухкомпонентная система представляет собой 20 %-й водный раствор уксусной кислоты. Тогда массовую долю второго компонента – воды можно рассчитать: 100 – 20 = 80 %. Поэтому указывать, сколько в системе содержится воды необязательно. Если в системе m фаз, то для описания их состава требуется m(k–1) переменных. Кроме того, на систему влияют внешние параметры, количество которых равно s. Следовательно, общее количество переменных,влияющих на состояние системы равно: m(k – 1) + s. Однако не все эти переменные независимы друг от друга, та как при равновесии распределение каждого из компонентов между различными фазами должно удовлетворять теореме равновесия Гиббса: Очевидно, что таких уравнений для каждого из компонентов будет на единицу меньше числа фаз. Например, если m = 3, то для первого компонента запишется только два уравнения: , тогда число уравнений, связывающих химические потенциалы одного компонента равно m – 1, а всех k компонентов – k(m – 1). Для определения числа термодинамических степеней свободы вычтем из общего числа параметров, описывающих состояние данной системы число уравнений, связывающих их: После преобразований получим: . (2.5) Уравнение (2.5) выражает основной закон фазового равновесия – правило фаз Гиббса. Если на систему влияют два внешних параметра (р и Т), то правило фаз Гиббса записывается .
|
|||||
Последнее изменение этой страницы: 2017-02-07; просмотров: 362; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.119.163 (0.009 с.) |