Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Двухуровневая иерархия соединенийСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Полная инкапсуляция приходящих кадров не является единственным новшеством стандарта 802. 1ah. Другим усовершенствованием этого стандарта является введение двухуровневой иерархии соединений между пограничными коммутаторами. Эта иерархия аналогична иерархии ТЕ-туннелей и псевдоканалов в рассмотренной ранее технологии EoMPLS и служит той же цели — обеспечению масштабируемости технологии при обслуживании большого количества пользовательских соединений. Для этого в кадр 802.1ah введено поле I-SID с предшествующим ему полем I-SID EtherType (с рекомендованным значением 0х88е7). Значение идентификатора I-SID (Information Service Identificator — идентификатор информационного сервиса) должно указывать на пользовательское соединение (виртуальную частную сеть пользователя) в сети РВВ. Так как сеть РВВ делится на сегменты В-VLAN, то соединения I-SID являются логическими соединениями внутри этих сегментов. Роль сегментов В-VLAN состоит в предоставлении транспортных услуг соединениям I-SID, в каждой сети В-VLAN может насчитываться до 16 миллионов соединений I-SID (это значение определяется форматом поля I-SID, состоящего из 24 разрядов). Двухуровневый механизм B-VID/I-SID рассчитан на то, что в сети провайдера будет небольшое количество сегментов В-VLAN, которые направляют потоки пользовательских данных, идущих по логическим соединениям I-SID, по нужным маршрутам, а также защищают их в случае отказов в сети РВВ (с помощью протоколов RSTP/MSTP, так как никаких новых средств маршрутизации и защиты трафика стандарт РВВ не вводит). С некоторой степенью приближения можно сказать, что сегменты В-VLAN играют роль туннелей MPLS, а соединения I-SID — псевдоканалов. Если же говорить о стандартах MEF, то соединения I-SID соответствуют виртуальным соединениям EVC. На рис. 21.13 показана сеть провайдера, оказывающая услуги Ethernet своим клиентам на основе стандарта РВВ. Она состоит из пограничных коммутаторов (Backbone Edge Bridge, ВЕВ) и магистральных коммутаторов (Backbone Core Bridge, ВСВ). Провайдер в этом примере предоставляет услуги трех частных виртуальных сетей: § E-LINE1 — передает голосовой трафик между сетями С1 и СЗ (двухточечная топология); § E-LINE2 — передает голосовой трафик между сетями С2 и С4 (двухточечная топология); § E-LAN1 — передает эластичный трафик данных между сетями С2, С4 и С6 (полносвязная топология). Рис. 21.13. Организация услуг в сети РВВ
Пользовательские сети непосредственно подключены к сети РВВ, промежуточных сетей РВ в этом примере нет. На верхнем уровне структуризации сети провайдера в ней сконфигурированы две магистральные виртуальные локальные сети (В-VLAN) с идентификаторами 1007 и 1033 (обозначены как B-VID 1007 и B-VID 1033 соответственно). В нашем примере различные сети В-VLAN призваны поддерживать трафик разного типа: B-VLAN 1007 поддерживает более требовательный голосовой трафик, a B-VLAN 1033 — менее требовательный эластичный трафик данных. В соответствии с этим назначением созданы и два покрывающих дерева для каждой из виртуальных сетей В-VLAN. Естественно, что назначение сетей B-VLAN может быть и иным — оно полностью определяется оператором сети РВВ в соответствии с его потребностями. На уровне пользовательских услуг в сети организовано три пользовательских соединения, помеченные как I-SID 56,144 и 108. Эти соединения предназначены для реализации услуг E-LINE1, E-LINE2 и E-LAN1 соответственно. Соединения I-SID 56 и 144 отображаются пограничными коммутаторами ВЕВ1 и ВЕВ2 на B-VLAN 1007, так как эти соединения переносят пользовательский голосовой трафик, а данная сеть В-VLAN была создана для этого типа трафика. В то же время соединение I-SID 108 отображается пограничными коммутаторами ВЕВ1, ВЕВ2 и ВЕВЗ на B-VLAN 1033, так как сервис 108 переносит эластичный пользовательский трафик данных. Задает эти отображения администратор при конфигурировании пограничных коммутаторов. Завершает процесс конфигурирования услуг E-LINE1, E-LINE2 и E-LAN1 отображение пользовательского трафика на соответствующие соединения I-SID. Это отображение также выполняется администратором сети при конфигурировании пограничных коммутаторов ВЕВ. При отображении пользовательского трафика администратор может учитывать только интерфейс, по которому трафик поступает в сеть провайдера, или же интерфейс и значение С-VID пользователя (или же S-VID, если трафик поступает через промежуточную сеть РВ). В нашем примере таким способом задано отображение для сервиса с I-SID 56, который монопольно использует интерфейсы коммутаторов ВЕВ1 и ВЕВ2, не разделяя их с другими сервисами. В терминологии MEF это сервис EPL (а тип сервиса — E-LINE). В том случае, когда на один и тот же интерфейс поступает трафик более чем одного сервиса, при отображении нужно также учитывать значение С-VID (или S-VID, если трафик принимается от сети РВ). Этот случай имеет место для сервисов с I-SID 144 и 108, так как они разделяют один и тот же интерфейс коммутаторов ВЕВ1 и ВЕВ2. Поэтому такие отображения нужно конфигурировать с учетом значений С-VID; например, если клиент использует для значения C-VID 305 и 500 для маркировки трафика двух различных услуг, то C-VID 305 отображается на I-SID 144, a C-VID 500 — на I-SID 108. В терминологии MEF сервис с I-SID 144 является сервисом EVPL (тип E-LINE), а сервис с I-SID 108 — сервисом EVP-LAN (тип E-LAN). Пользовательские МАС-адреса Теперь нам нужно рассмотреть важный вопрос применения пользовательских МАС- адресов. Магистральным коммутаторам сети РВВ знание пользовательских адресов не требуется, так как они передают кадры только на основании комбинации B-MAC/B-VID. А вот поведение пограничных коммутаторов в отношении пользовательских МАС-адресов зависит от типа сервиса. При отображении кадров сервиса типа E-LINE (то есть «точка-точка») на определенное соединение I-SID пограничные коммутаторы не применяют пользовательские МАС-адреса, так как все кадры, независимо от их адресов назначения, передаются одному и тому же выходному пограничному коммутатору. Например, для сервисов с I-SID 56 и 144 коммутатор ВЕВ1 всегда задействует МАС-адрес коммутатора ВЕВ2 в качестве В-МАС DA при формировании несущего (нового) кадра, который переносит инкапсулированный пользовательский кадр через сеть РВВ. Однако при отображении кадров сервисов типа Е-LAN и E-TREE (то есть «многоточка- многоточка») у входного коммутатора всегда существует несколько выходных пограничных коммутаторов, поддерживающих этот сервис. Например, у входного коммутатора ВЕВ1 при обслуживании кадров сервиса с I-SID 108 есть альтернатива — отправить пришедший кадр коммутатору ВЕВ2 или ВЕВЗ. Для принятия решения в таких случаях применяются пользовательские МАС-адреса. Пограничные коммутаторы, поддерживающие сервисы типа Е-LAN и E-TREE, изучают пользовательские МАС-адреса и посылают кадр выходному коммутатору, связанному с той сетью пользователя, в которой находится МАС-адрес назначения С-МАС DA. Так, в нашем примере коммутатор ВЕВ1 изучает адреса С-МАС SA кадров, поступающих по I-SID 108, чтобы знать, подключены ли узлы с этими адресами к ВЕВ2 или ВЕВЗ. В результате ВЕВ1 создает таблицу продвижения (табл. 21.1). Таблица 21.1. Таблица продвижения для сервиса I-SID 108
На основании этой таблицы коммутатор ВЕВ1 по адресу назначения С-МАС выбирает соответствующий адрес выходного пограничного коммутатора и помещает его в формируемый кадр, например, для кадра с адресом назначения С-МАС-2 это будет В-МАС-2. В том же случае, когда пользовательский адрес назначения еще не изучен, коммутатор ВЕВ1 помещает в поле В-МАС широковещательный адрес. Таким же образом обрабатываются кадры с широковещательным пользовательским адресом.
|
|||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2017-02-05; просмотров: 561; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.26.171 (0.008 с.) |