Квантовая теория и строение материи 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Квантовая теория и строение материи



Понятие материи, на самом деле, многоуровневое. Рассмотрим эти уровни по отдельности.

Из чего построено всякое вещество? Атомы химических элементов образуют соединения посредством химической связи. Химическими методами можно поменять связи между атомами, но не затронуть типового свойства атома – превратить его в другой элемент. До открытия ядерных реакций понятие материи в основном сводилось к атомам и их взаимосвязям.

Открытие радиоактивности, эксперименты Резерфорда показали сложность строения атома. Атом содержит ядро и электроны. Расщепление ядер показало, что они в свою очередь, так же как и атомы, сложны. Вводится понятие элементарных частиц. Этими частицами являются нейтрон, протон и электрон. На сегодняшний день при данном уровне развития науки понятие материи сводится к элементарным частицам. Но это еще не предел.

Установлено, что столкновение элементарных частиц рождает новые элементарные частицы, но это не обломки первых, а такие же элементарные частицы. Частицы превращаются друг в друга, в излучение, поскольку их сущность – энергия, та самая потенция, о которой еще мыслил Аристотель. Более того, эти частицы в состоянии образовываться из кинетической энергии – энергии движущегося тела.

Энергия – подлинное бытие. Она же и есть материя, хотя не обязательно обладает плотностью, как это должно было бы быть при классическом подходе. Энергия – это то, из чего все образуется и во что, в конечном счете, может превратиться.

Энергия воплощается в вещах, в излучении, во взаимодействиях тел – все это формы материи, а так же ее движения. Материя подчиняется единому уравнению. Ранее в математике было показано, что существует ограниченное число групп симметрии. Данные группы лежат в основе законов природы, точнее в их формальном математическом представлении. Универсальное уравнение материи так же симметрично относительно этих групп. Решения этого уравнения представляют собой элементарные частицы.

Не все так безоблачно с пониманием мира с позиций квантовой теории. Существует пока непреодоленное противоречие между квантовой теорией и теорией относительности.

Связано это с тем, что в теории относительности присутствует предельное ограничение точности по времени. Отсюда вытекает возможность сколь угодно больших энергий в соответствие с принципом неопределенности.

Данное рассмотрение позволяет сделать вывод о том, что и древние мыслители имели некоторое правильное понимание проблемы материи. Материя действительно строительный материал и потенция, так как энергия это и возможность совершения некой работы, а так же источник возникновения элементарных частиц.

С другой стороны, отчасти прав был Платон, когда говорил, что элементам – элементарным частицам в современном понимании – соответствует число, решение универсального уравнения материи в рамках квантовой теории.

Не стоит полагать, что древние философы уже, якобы, знали все то, до чего дошла современная наука. Их рассуждения были чисто умозрительными и в ряде случаев неверными. Реальная ситуация такова, что современные представления о материи можно соотнести с представлениями древних и увидеть много общего. Главная особенность современных взглядов в том, что они, в отличие от древних взглядов, подкреплены серьезнейшим эмпирическим материалом.

В течение длительного времени прежде развития квантовой теории предполагалось существование некоего всепроникающего вещества. Необходимость в таком предположении исходила из наблюдаемого факта – свет проходит через вакуум. Следовательно, поскольку волновые свойства света были уже установлены, необходимо было постулировать наличие среды, в которой световые волны распространяются. Было непонятно, есть ли он вообще, а если и есть, то, движется ли он вместе с движущимся телом или нет. В любом случае имелась возможность обнаружить наличие «эфирного ветра». Если эфир покоится относительно Земли, то ветер будет около 30 км/с! Если же движется вместе с Землей, то на разных высотах величина «эфирного ветра» должна быть различной.

Для проверки гипотезы существования эфира Майкельсон и Морли провели опыт, который был основан на том, что при наличии «эфирного ветра» скорость света должна быть разной в зависимости от направления «ветра». Разность скоростей света в разных направлениях приводит к появлению разности хода световых лучей в интерферометре, ориентированном по направлению движения Земли. Если бы интерференционная картина изменилась при ином ориентировании интерферометра относительно движения Земли, то наличие эфира можно считать доказанным. На деле никакого эфирного ветра не оказалось.

После того, как с распространением света проблемы были сняты, и стало ясно, что свет спокойно может распространяться в пустоте, встал вопрос о зависимости скорости света от скорости среды, в которой он распространяется. На опыте оказалось, что скорость света в движущейся по направлению распространения света воде даже меньше, чем в покоящейся. Такие, странные на первый взгляд, результаты привели ученых в замешательство. В последствии оказалось, что скорость света по отношению к движущемуся навстречу ему телу не превышает скорость света в вакууме.

Эйнштейн сделал смелое предположение: скорость света в вакууме – максимально достижимая материальным телом скорость. Это предположение стало постулатом теории относительности. Поскольку предельной скоростью движения материального тела может быть скорость света в вакууме, то, не вдаваясь в конкретные выражения теории относительности, оказывается, что время и расстояние в движущейся системе отсчета относительно другой системы связано с ее скоростью относительно этой второй системы отсчета.

В теории относительности вводится понятие одновременности, отличное от обыденного понятия. Одновременными могут считаться только те события, информация о которых, например, свет, прибывают в точку наблюдения в один и тот же момент времени, судя по часам, находящимся в этой точке.

Весьма интересным оказалось соотношение массы и энергии, найденное Эйнштейном. В связи с этим возникли антиматериалистические тенденции в философии. Правда эти антиматериалистические тенденции не получили широкого распространения.

На рубеже XIX и XX веков активно развивается квантовая теория. Рэлей и Джинс пытались объяснить с позиций классической механики хорошо известный факт, заключающийся в том, что при нагревании тела независимо от его цвета, оно начинает светиться цветом, зависящим от температуры. Сначала тело светится красным, далее оранжевым, потом при еще большем повышении температуры белым цветом. Представления классической механики, применяемые к объяснению данного факта, приводили к противоречиям с наблюдениями. Кроме того, классическая механика была абсолютно не в состоянии объяснить устойчивость атомов в свете планетарной модели, бытовавшей в то время.Стало ясно, что надо менять теорию.

Макс Планк – немецкий физик, попытался объяснить наблюдаемые явления на основе некоторых соотношений, казавшихся ему верными. Поначалу данные соотношения М. Планка имели характер догадок, причем сам Планк продолжал их анализировать. Физический смысл этих соотношений был неясен даже самому М. Планку! Оказалось, что М. Планк говорил о новой физической реальности – квантованности энергии, которую может поглощать или испускать атом. Дело в том, что по предположению М. Планка значение энергии атома не континуально, а прерывисто.

Нильс Бор положил начало «матричной механике». Здесь уже происходит отказ от традиционной планетарной модели атома, и серьезнейшим образом формализуются утверждения теории. Матричная механика, в отличие от классической, объясняла устойчивость атомов.

Луи - де - Бройль развивает представления о соответствии всякой элементарной частице волны. Развитие этим представлениям дал немецкий физик Э. Шредингер. Основную трудность в понимании, представляло собой это самое «соответствие». Например, как может свет, поток фотонов, быть одновременно волной? Эксперимент, как ни странно, указывал на дуалистическую природу света. Позднее Шредингер показал эквивалентность своих исследований с «матричной механикой». Тем не менее, противоречия в волновом и корпускулярном представлении электронов и света оставались неразрешенными.

Настоящий успех достигнут к 1924-26 гг. В физику вводится понятие «волны вероятности». Вот как это описывает В. Гейзенберг: «Волна вероятности означала нечто подобное стремлению к определенному протеканию событий. Она означала количественное выражение старого понятия «потенция» аристотелевской философии».

Введение вероятностных представлений в физику дало совсем иное понимание процессов микромира. Несмотря на это нововведение, классические представления не утратили своего значения. Теперь для применения классической или квантовой теории обозначились четкие границы. На самом деле, классические представления не совсем точно соответствуют природе.

Так одновременно сколь угодно точно определить координату и импульс частицы невозможно. Произведение этих неопределенностей имеет порядок постоянной Планка. Проблема состоит в том, что в отличие от прежних представлений, когда исследователь и его инструменты никак (или почти никак) не влияли на результаты эксперимента, исследование микромира производится другими объектами того же микромира. Например, чтобы определить координату электрона, необходимо, чтобы он провзаимодействовал с фотоном, иначе мы никак не получим информации. Это взаимодействие существенно изменит координату электрона. Аналогичная ситуация с импульсом. В микромире описание процессов возможно лишь на вероятностном уровне.

Итак, в конце XIX века в физике произошло множество открытий, носящих революционный характер: открытие А. Беккерелем в 1897 году явления радиоактивности; в 1900 году М. Планк выдвинул квантовую гипотезу о прерывности процессов излучения. В результате в физике сформировалось два, казалось несовместимых представления о материи – корпускулярное и континуальное (полевое). В 1913 году Н. Бор предложил свою модель атома (стационарную), в которой электрон, вращавшийся вокруг ядра, излучал энергию только порциями при переходе с одной орбиты на другую. Это противоречило известным законам электродинамики, но позволило сделать прорыв в науке, т.е. создать фундаментальные физические теории – квантовую механику и квантовую электродинамику. Над их созданием работали Э. Резерфорд, Л. де Бройль, Э. Шредингер, В. Гейзенберг, М. Борн.

 

Важнейшие понятия новых теорий

Корпускулярно-волновой дуализм – наличие у каждой частицы материи свойств волны и частицы одновременно.

Cоотношение неопределенностей Гейзенберга – невозможность одновременного измерения координат и импульса частицы.

Мировые универсальные константы – постоянные, которые не сводимы друг к другу и имеют значение для всей наблюдаемой части Вселенной:

- скорость света в вакууме (с = 300 000 км/с) – это максимальная скорость для всех возможных взаимодействий в природе;

- гравитационная постоянная (G), используемая в законе всемирного тяготения;

- постоянная Планка (h) – это квант энергии, входит во все уравнения, описывающие процессы на уровне микромира;

- постоянная Больцмана (k), она устанавливает связь между микроскопическим динамическими явлениями и макроскопическими характеристиками состояния объединений частиц.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 526; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.41.106 (0.013 с.)