Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Великие химики: краткая биография
Роберт БОЙЛЬ (1627 – 1691) Он родился 25 января 1627 года в Лисморе (Ирландия), а образование получил в Итонском колледже (1635-1638) и в Женевской академии (1639-1644). После этого почти безвыездно жил в своем имении в Столбридже, там и проводил свои химические исследования в течение 12 лет. В 1656 году Бойль перебирается в Оксфорд, а в 1668 году переезжает в Лондон. Научная деятельность Роберта Бойля была основана на экспериментальном методе и в физике, и в химии, и развивала атомистическую теорию. В 1660 году он открыл закон изменения объема газов (в частности, воздуха) с изменением давления. Позднее он получил имя закона Бойля-Мариотта: независимо от Бойля этот закон сформулировал французский физик Эдм Мариотт. Бойль много занимался изучением химических процессов – например, протекающих при обжиге металлов, сухой перегонке древесины, превращениях солей, кислот и щелочей. В 1654 году он ввел в науку понятие анализа состава тел. Одна из книг Бойля носила название "Химик-скептик". В ней были определены элементы как " первоначальные и простые, вполне не смешанные тела, которые не составлены друг из друга, но представляют собой те составные части, из которых составлены все так называемые смешанные тела и на которые последние могут быть в конце концов разложены ". А в 1661 году Бойль формулирует понятие о " первичных корпускулах " как элементах и " вторичных корпускулах " как сложных телах. Он также впервые дал объяснение различиям в агрегатном состоянии тел. В 1660 году Бойль получил ацетон, перегоняя ацетат калия, в 1663 году обнаружил и применил в исследованиях кислотно-основный индикатор лакмус в лакмусовом лишайнике, произрастающем в горах Шотландии. В 1680 году он разработал новый способ получения фосфора из костей, получил ортофосфорную кислоту и фосфин... В Оксфорде Бойль принял деятельное участие в основании научного общества, которое в 1662 году было преобразовано в Лондонское Королевское общество (фактически это английская Академия наук). Роберт Бойль умер 30 декабря 1691 года, оставив будущим поколениям богатое научное наследие. Бойлем было написано множество книг, некоторые из них вышли в свет уже после смерти ученого: часть рукописей была найдена в архивах Королевского общества...
АВОГАДРО Амедео (1776 – 1856) Итальянский физик и химик, член Туринской академии наук (с 1819 г.). Родился в Турине. Окончил юридический факультет Туринского университета (1792 г.). С 1800 г. самостоятельно изучал математику и физику. В 1809 - 1819 гг. преподавал физику в лицее г. Верчелли. В 1820 - 1822 и 1834 - 1850 гг. – профессор физики Туринского университета. Научные работы относятся к различным областям физики и химии. В 1811 г. заложил основы молекулярной теории, обобщил накопленный к тому времени экспериментальный материал о составе веществ и привел в единую систему противоречащие друг другу опытные данные Ж. Гей-Люссака и основные положения атомистики Дж. Дальтона. Открыл (1811 г.) закон, согласно которому в одинаковых объемах газов при одинаковых температурах и давлениях содержится одинаковое количество молекул (закон Авогадро). Именем Авогадро названа универсальная постоянная – число молекул в 1 моль идеального газа. Создал (1811 г.) метод определения молекулярных масс, посредством которого по экспериментальным данным других исследователей первым правильно вычислил (1811-1820 гг.) атомные массы кислорода, углерода, азота, хлора и ряда других элементов. Установил количественный атомный состав молекул многих веществ (в частности, воды, водорода, кислорода, азота, аммиака, оксидов азота, хлора, фосфора, мышьяка, сурьмы), для которых он ранее был определен неправильно. Указал (1814 г.) состав многих соединений щелочных и щелочноземельных металлов, метана, этилового спирта, этилена. Первым обратил внимание на аналогию в свойствах азота, фосфора, мышьяка и сурьмы – химических элементов, составивших впоследствии VA-группу Периодической системы. Результаты работ Авогадро по молекулярной теории были признаны лишь в 1860 г. на I Международном конгрессе химиков в Карлсруэ. В 1820-1840 гг. занимался электрохимией, изучал тепловое расширение тел, теплоемкости и атомные объемы; при этом получил выводы, которые координируются с результатами позднее проведенных исследований Д.И. Менделеева по удельным объемам тел и современными представлениями о строении вещества. Издал труд "Физика весовых тел, или же трактат об общей конструкции тел" (т. 1-4, 1837 - 1841 гг.), в котором, в частности, намечены пути к представлениям о нестехиометричности твердых тел и о зависимости свойств кристаллов от их геометрии.
Йенс-Якоб Берцелиус (1779-1848) Шведский химик Йенс-Якоб Берцелиус родился в семье директора школы. Отец умер вскоре после его рождения. Мать Якоба вторично вышла замуж, но после рождения второго ребенка заболела и умерла. Отчим сделал все, чтобы Якоб и его младший брат получили хорошее образование. Химией Якоб Берцелиус увлекся только в двадцатилетнем возрасте, но уже в 29 лет он был избран членом Шведской королевской Академии наук, а двумя годами позже – ее президентом. Берцелиус на опыте подтвердил многие химические законы, известные к тому времени. Работоспособность Берцелиуса поражает: он проводил в лаборатории по 12-14 часов в сутки. На протяжении своей двадцатилетней научной деятельности он исследовал более двух тысяч веществ и точно определил их состав. Он открыл три новых химических элемента (церий Ce, торий Th и селен Se), впервые выделил в свободном состоянии кремний Si, титан Ti, тантал Ta и цирконий Zr. Берцелиус много занимался теоретической химией, составлял ежегодные обзоры успехов физических и химических наук, был автором самого популярного в те годы учебника химии. Возможно, это и заставило его ввести в химический обиход удобные современные обозначения элементов и химические формулы. Берцелиус женился только в 55 лет на двадцатичетырехлетней Иоганне Элизабет, дочери своего старинного друга Поппиуса, государственного канцлера Швеции. Брак их был счастливым, но детей не было. В 1845 году состояние здоровья Берцелиуса ухудшилось. После одного особенно сильного приступа подагры у него оказались парализованы обе ноги. В августе 1848 года на семидесятом году жизни Берцелиус умер. Он похоронен на маленьком кладбище вблизи Стокгольма. Владимир Иванович ВЕРНАДСКИЙ (1863 – 1945) Владимир Иванович Вернадский во время учебы в Петербургском университете слушал лекции Д.И. Менделеева, А.М. Бутлерова и других известных российских химиков. Со временем он сам стал строгим и внимательным учителем. Его учениками или учениками его учеников являются почти все минералоги и геохимики нашей страны. Выдающийся естествоиспытатель не разделял точку зрения, что минералы есть нечто неизменное, часть установившейся "системы природы". Он считал, что в природе идет постепенное взаимное превращение минералов. Вернадский создал новую науку – геохимию. Владимир Иванович первым отметил огромную роль живого вещества – всех растительных и животных организмов и микроорганизмов на Земле – в истории перемещения, концентрации и рассеяния химических элементов. Ученый обратил внимание, что некоторые организмы способны накапливать железо, кремний, кальций и другие химические элементы и могут участвовать в образовании месторождений их минералов, что микроорганизмы играют огромную роль в разрушении горных пород. Вернадский утверждал, что " разгадка жизни не может быть получена только путем изучения живого организма. Для ее разрешения надо обратиться и к его первоисточнику – к земной коре ". Изучая роль живых организмов в жизни нашей планеты, Вернадский пришел к выводу, что весь атмосферный кислород – это продукт жизнедеятельности зеленых растений. Владимир Иванович уделял исключительное внимание проблемам экологии. Он рассматривал глобальные экологические вопросы, влияющие на биосферу в целом. Более того, он создал само учение о биосфере – области активной жизни, охватывающей нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы, в которой деятельность живых организмов (в том числе и человека) является фактором планетарного масштаба. Он считал, что биосфера под влиянием научных и производственных достижений постепенно переходит в новое состояние - сферу разума, или ноосферу. Решающим фактором развития этого состояния биосферы должна стать разумная деятельность человека, гармоничное взаимодействие природы и общества. Это возможно лишь при учете тесной взаимосвязи законов природы с законами мышления и социально-экономическими законами.
Джон ДАЛЬТОН (Dalton J.) (1766 – 1844) Джон Дальтон родился в бедной семье, обладал большой скромностью и необычайной жаждой знаний. Он не занимал никакой важной университетской должности, был простым учителем математики и физики в школе и колледже. Основные научные исследования до 1800-1803 гг. относятся к физике, более поздние – к химии. Проводил (с 1787 г.) метеорологические наблюдения, исследовал цвет неба, природу тепла, преломление и отражение света. В результате создал теорию испарения и смешения газов. Описал (1794 г.) дефект зрения, названный дальтонизмом. Открыл три закона, составивших сущность его физической атомистики газовых смесей: парциальных давлений газов (1801 г.), зависимости объема газов при постоянном давлении от температуры (1802 г., независимо от Ж.Л. Гей-Люссака) и зависимости растворимости газов от их парциальных давлений (1803 г.). Эти работы привели его к решению химической проблемы соотношения состава и строения веществ. Выдвинул и обосновал (1803-1804 гг.) теорию атомного строения, или химическую атомистику, объяснившую эмпирический закон постоянства состава. Теоретически предсказал и открыл (1803 г.) закон кратных отношений: если два элемента образуют несколько соединений, то массы одного элемента, приходящиеся на одну и ту же массу другого, относятся как целые числа. Составил (1803 г.) первую таблицу относительных атомных масс водорода, азота, углерода, серы и фосфора, приняв за единицу атомную массу водорода. Предложил (1804 г.) систему химических знаков для "простых" и "сложных" атомов. Проводил (с 1808 г.) работы, направленные на уточнение отдельных положений и разъяснение сущности атомистической теории. Автор труда "Новая система химической философии" (1808-1810 гг.), пользующегося всемирной известностью.
Член многих академий наук и научных обществ. Сванте АРРЕНИУС (р. 1859) Сванте-Август Аррениус родился в старинном шведском городе Упсале. В гимназии он был одним из лучших учеников, особенно легко ему давалось изучение физики и математики. В 1876 году юноша был принят в Упсальский университет. И уже через два года (на шесть месяцев раньше срока) он сдал экзамен на степень кандидата философии. Однако впоследствии он жаловался, что обучение в университете велось по устаревшим схемам: например, "нельзя было услышать ни единого слова о менделеевской системе, а ведь ей было уже больше десяти лет"… В 1881 году Аррениус переехал в Стокгольм и поступил на работу в Физический институт Академии наук. Там он приступил к изучению электрической проводимости сильно разбавленных водных растворов электролитов. Хотя Сванте Аррениус по образованию – физик, он знаменит своими химическими исследованиями и стал одним из основателей новой науки – физической химии. Больше всего он занимался изучением поведения электролитов в растворах, а также исследованием скорости химических реакций. Работы Аррениуса долгое время не признавали его соотечественники, и только когда его выводы получили высокую оценку в Германии и Франции, он был избран в Шведскую академию наук. За разработку теории электролитической диссоциации Аррениусу была присуждена Нобелевская премия 1903 года. Веселый и добродушный великан Сванте Аррениус, настоящий "сын шведской сельской местности", всегда был душой общества, располагал к себе коллег и просто знакомых. Он был дважды женат; его двух сыновей звали Олаф и Свен. Он получил широкую известность не только как физикохимик, но и автор множества учебников, научно-популярных и просто популярных статей и книг по геофизике, астрономии, биологии и медицине. Но путь к мировому признанию для Аррениуса-химика был совсем не прост. У теории электролитической диссоциации в ученом мире были очень серьезные противники. Так, Д.И. Менделеев резко критиковал не только саму идею Аррениуса о диссоциации, но и чисто "физический" подход к пониманию природы растворов, не учитывающий химических взаимодействий между растворенным веществом и растворителем. Впоследствии выяснилось, что и Аррениус, и Менделеев были каждый по-своему правы, и их взгляды, дополняя друг друга, составили основу новой – протонной – теории кислот и оснований. КАВЕНДИШ Генри (1731 – 1810) Английский физик и химик, член Лондонского королевского общества (с 1760 г.). Родился в Ницце (Франция). Окончил Кембриджский университет (1753 г.). Научные исследования проводил в собственной лаборатории. Работы в области химии относятся к пневматической (газовой) химии, одним из создателей которой он является. Выделил (1766 г.) в чистом виде углекислый газ и водород, приняв последний за флогистон, установил основной состав воздуха как смесь азота и кислорода. Получил окислы азота. Сжиганием водорода получил (1784 г.) воду, определив соотношение объемов взаимодействующих в этой реакции газов (100:202). Точность его исследований была столь велика, что позволила ему при получении (1785 г.) окислов азота посредством пропускания электрической искры через увлажненный воздух наблюдать наличие "дефлогистированного воздуха", составляющего не более 1/20 части общего объема газов. Это наблюдение помогло У. Рамзаю и Дж. Рэлею открыть (1894 г.) благородный газ аргон. Свои открытия объяснял с позиции теории флогистона.
В области физики во многих случаях предвосхитил более поздние открытия. Закон, согласно которому силы электрического взаимодействия обратно пропорциональны квадрату расстояния между зарядами, был открыт им (1767 г.) на десять лет раньше французского физика Ш. Кулона. Экспериментально установил (1771 г.) влияние среды на емкость конденсаторов и определил (1771 г.) значение диэлектрических постоянных ряда веществ. Определил (1798 г.) силы взаимного притяжения тел под влиянием тяготения и вычислил тогда же среднюю плотность Земли. О работах Кавендиша в области физики стало известно лишь в 1879 г. – после того, как английский физик Дж. Максвелл опубликовал его рукописи, находившиеся до этого времени в архивах. Именем Кавендиша названа организованная в 1871 г. физическая лаборатория в Кембриджском университете. КЕКУЛЕ Фридрих Август (Kekule F.A.) (1829 – 1896) Немецкий химик - органик. Родился в Дармштадте. Окончил Гисенский университет (1852 г.). Слушал в Париже лекции Ж. Дюма, Ш. Вюрца, Ш. Жеpapa. В 1856-1858 гг. преподавал в Гейдельбергском университете, в 1858-1865 гг. – профессор Гентского университета (Бельгия), с 1865 г. – Боннского университета (в 1877-1878 гг. – ректор). Научные интересы преимущественно были сосредоточены в области теоретической органической химии и органического синтеза. Получил тиоуксусную кислоту и другие сернистые соединения (1854 г.), гликолевую кислоту (1856 г.). Впервые по аналогии с типом воды ввел (1854 г.) тип сероводорода. Высказал (1857 г.) мысль о валентности как о целом числе единиц сродства, которым обладает атом. Указал на "двухосновность" (двухвалентность) серы и кислорода. Разделил (1857 г.) все элементы, за исключением углерода, на одно-, двух- и трехосновные; углерод же отнес к четырехосновным элементам (одновременно с Л.В.Г. Кольбе). Выдвинул (1858 г.) положение о том, что конституция соединений обусловливается "основностью", то есть валентностью, элементов. Впервые (1858 г.) показал, что число атомов водорода, связанных с n атомами углерода, равно 2 n + 2. На основе теории типов сформулировал первоначальные положения теории валентности. Рассматривая механизм реакций двойного обмена, высказал мысль о постепенном ослаблении исходных связей и привел (1858 г.) схему, являющуюся первой моделью активированного состояния. Предложил (1865 г.) циклическую структурную формулу бензола, распространив тем самым теорию химического строения Бутлерова на ароматические соединения. Экспериментальные работы Кекуле тесно связаны с его теоретическими исследованиями. С целью проверки гипотезы о равноценности всех шести атомов водорода в бензоле получил его галоген-, нитро-, амино- и карбоксипроизводные. Осуществил (1864 г.) цикл превращений кислот: природная яблочная - бромянтарная - оптически неактивная яблочная. Открыл (1866 г.) перегруппировку диазоамино- в аминоазобензол. Синтезировал трифенилметан (1872 г.) и антрахинон (1878 г.). Для доказательства строения камфары предпринял работы по превращению ее в оксицимол, а затем в тиоцимол. Изучил кротоновую конденсацию ацетальдегида и реакцию получения карбокситартроновой кислоты. Предложил методы синтеза тиофена на основе диэтилсульфида и ангидрида янтарной кислоты. Президент Немецкого химического общества (1878, 1886, 1891 гг.). Один из организаторов I Международного конгресса химиков в Карлсруэ (1860 г.). Иностранный чл.-кор. Петербургской АН (с 1887 г.). Антуан-Лоран ЛАВУАЗЬЕ (1743-1794) Французский химик Антуан-Лоран Лавуазье по образованию юрист, был очень богатым человеком. Он состоял в "Компании откупов" – организации финансистов, бравшей на откуп государственные налоги. На этих финансовых операциях Лавуазье приобрел огромное состояние. Политические события, происходившие во Франции, имели для Лавуазье печальные последствия: он был казнен за то, что работал в "Генеральном откупе" (акционерном обществе по сбору налогов). В мае 1794 года в числе других обвиняемых-откупщиков Лавуазье предстал перед революционным трибуналом и на следующий день был приговорен к смертной казни "как зачинщик или соучастник заговора, стремившийся содействовать успеху врагов Франции путем вымогательств и незаконных поборов с французского народа". Вечером 8 мая приговор был приведен в исполнение, а Франция лишилась одной из самых блестящих голов... Через два года Лавуазье был признан несправедливо осужденным, однако, это уже не могло вернуть Франции замечательного ученого. Еще обучаясь на юридическом факультете Парижского университета, будущий генеральный откупщик и выдающийся химик одновременно изучал естественные науки. Часть своего состояния Лавуазье вложил в обустройство химической лаборатории, оснащенной прекрасным по тем временам оборудованием, ставшую научным центром Парижа. В своей лаборатории Лавуазье провел многочисленные опыты, в которых он определял изменения масс веществ при их прокаливании и горении. Лавуазье первым показал, что масса продуктов горения серы и фосфора больше, чем масса сгоревших веществ, и что объем воздуха, в котором горел фосфор, уменьшился на 1/5 часть. Нагревая ртуть с определенным объемом воздуха, Лавуазье получил "ртутную окалину" (оксид ртути) и "удушливый воздух" (азот), непригодный для горения и дыхания. Прокаливая ртутную окалину, он разложил ее на ртуть и "жизненный воздух" (кислород). Этими и многими другими опытами Лавуазье показал сложность состава атмосферного воздуха и впервые правильно истолковал явления горения и обжига как процесс соединения веществ с кислородом. Этого не смогли сделать английский химик и философ Джозеф Пристли и шведский химик Карл-Вильгельм Шееле, а также другие естествоиспытатели, которые сообщили об открытии кислорода раньше. Лавуазье доказал, что углекислый газ (диоксид углерода) – это соединение кислорода с "углем" (углеродом), а вода – соединение кислорода с водородом. Он на опыте показал, что при дыхании поглощается кислород и образуется углекислый газ, то есть процесс дыхания подобен процессу горения. Более того, французский химик установил, что образование углекислого газа при дыхании является главным источником "животной теплоты". Лавуазье одним из первых попытался объяснить сложные физиологические процессы, происходящие в живом организме, с точки зрения химии. Лавуазье стал одним из основоположников классической химии. Он открыл закон сохранения веществ, ввел понятия "химический элемент" и "химическое соединение", доказал, что дыхание подобно процессу горения и является источником теплоты в организме Лавуазье был автором первой классификации химических веществ и учебника "Элементарный курс химии". В 29 лет он был избран действительным членом Парижской Академии наук. Анри-Луи ЛЕ-ШАТЕЛЬЕ (1850 – 1936) Анри-Луи Ле-Шателье родился 8 октября 1850 года в Париже. После окончания Политехнической школы в 1869 году он поступил в Высшую Национальную горную школу. Будущий открыватель знаменитого принципа был широко образованным и эрудированным человеком. Его интересовали и техника, и естественные науки, и общественная жизнь. Много времени он посвятил изучению религии и древних языков. В возрасте 27 лет Ле-Шателье стал уже профессором Высшей горной школы, а тридцать лет спустя – Парижского университета. Тогда же он был избран в действительные члены Парижской Академии наук. Наиболее важный вклад французского ученого в науку был связан с изучением химического равновесия, исследованием смещения равновесия под действием температуры и давления. Студенты Сорбонны, слушавшие лекции Ле-Шателье в 1907-1908 годах, так записывали в своих конспектах: " Изменение любого фактора, могущего влиять на состояние химического равновесия системы веществ, вызывает в ней реакцию, стремящуюся противодействовать производимому изменению. Повышение температуры вызывает реакцию, стремящуюся понизить температуру, то есть идущую с поглощением тепла. Увеличение давления вызывает реакцию, стремящуюся вызвать уменьшение давления, то есть сопровождающуюся уменьшением объема...". К сожалению, Ле-Шателье не был удостоен Нобелевской премии. Причина заключалась в том, что эта премия присуждалась только авторам работ, выполненных или получивших признание в год получения премии. Важнейшие работы Ле Шателье были выполнены задолго до 1901 года, когда состоялось первое присуждение Нобелевских премий. ЛОМОНОСОВ Михаил Васильевич (1711 – 1765) Русский ученый, академик Петербургской АН (с 1745 г.). Родился в д. Денисовка (ныне с. Ломоносове Архангельской обл.). В 1731-1735 гг. учился в Славяно-греко-латинской академии в Москве. В 1735 г. был послан в Петербург в академический университет, а в 1736 г. – в Германию, где учился в Марбургском университете (1736-1739 гг.) и во Фрейберге в Школе горного дела (1739-1741 гг.). В 1741-1745 гг. – адъюнкт Физического класса Петербургской АН, с 1745 г. – профессор химии Петербургской АН, с 1748 г. работал в учрежденной по его инициативе Химической лаборатории АН. Одновременно с 1756 г. проводил исследования на основанном им в Усть-Рудицах (вблизи Петербурга) стекольном заводе и в домашней лаборатории. Творческая деятельность Ломоносова отличается как исключительной широтой интересов, так и глубиной проникновения в тайны природы. Его исследования относятся к математике, физике, химии, наукам о Земле, астрономии. Результаты этих исследований заложили основы современного естествознания. Ломоносов обратил внимание (1756 г.) на основополагающее значение закона сохранения массы вещества в химических реакциях; изложил (1741-1750 гг.) основы своего корпускулярного (атомно-молекулярного) учения, получившего развитие лишь спустя столетие; выдвинул (1744-1748 гг.) кинетическую теорию теплоты; обосновал (1747-1752 гг.) необходимость привлечения физики для объяснения химических явлений и предложил для теоретической части химии название "физическая химия", а для практической части – "техническая химия". Его труды стали рубежом в развитии науки, отграничивающим натурфилософию от экспериментального естествознания. До 1748 г. Ломоносов занимался преимущественно физическими исследованиями, а в период 1748-1757 гг. его работы посвящены главным образом решению теоретических и экспериментальных вопросов химии. Развивая атомистические представления, он впервые высказал мнение о том, что тела состоят из "корпускул", а те, в свою очередь, – из "элементов"; это соответствует современным представлениям о молекулах и атомах. Был зачинателем применения математических и физических методов исследования в химии и первым начал читать в Петербургской АН самостоятельный "курс истинно физической химии". В руководимой им Химической лаборатории Петербургской АН выполнялась широкая программа экспериментальных исследований. Разработал точные методы взвешивания, применял объемные методы количественного анализа. Проводя опыты по обжигу металлов в запаянных сосудах, показал (1756 г.), что их вес после нагревания не изменяется и что мнение Р. Бойля о присоединении тепловой материи к металлам ошибочно. Изучал жидкое, газообразное и твердое состояния тел. Достаточно точно определил коэффициенты расширения газов. Изучал растворимость солей при разных температурах. Исследовал влияние электрического тока на растворы солей, установил факты понижения температуры при растворении солей и понижения точки замерзания раствора по сравнению с чистым растворителем. Проводил различие между процессом растворения металлов в кислоте, сопровождающимся химическими изменениями, и процессом растворения солей в воде, происходящим без химических изменений растворяемых веществ. Создал различные приборы (вискозиметр, прибор для фильтрования под вакуумом, прибор для определения твердости, газовый барометр, пирометр, котел для исследования веществ при низком и высоком давлениях), достаточно точно градуировал термометры. Был создателем многих химических производств (неорганических пигментов, глазурей, стекла, фарфора). Разработал технологию и рецептуру цветных стекол, которые он употреблял для создания мозаичных картин. Изобрел фарфоровую массу. Занимался анализом руд, солей и других продуктов. В труде "Первые основания металлургии, или рудных дел" (1763 г.) рассмотрел свойства различных металлов, дал их классификацию и описал способы получения. Наряду с другими работами по химии труд этот заложил основы русского химического языка. Рассмотрел вопросы образования в природе различных минералов и нерудных тел. Высказал идею биогенного происхождения гумуса почвы. Доказывал органическое происхождение нефтей, каменного угля, торфа и янтаря. Описал процессы получения железного купороса, меди из медного купороса, серы из серных руд, квасцов, серной, азотной и соляной кислот. Первым из русских академиков приступил к подготовке учебников по химии и металлургии ("Курс физической химии", 1754 г.; "Первые основания металлургии, или рудных дел", 1763 г.). Ему принадлежит заслуга создания Московского университета (1755 г.), проект и учебная программа которого составлены им лично. По его проекту в 1748 г. завершена постройка Химической лаборатории Петербургской АН. С 1760 г. был попечителем гимназии и университета при Петербургской АН. Создал основы современного русского литературного языка. Был поэтом и художником. Написал ряд трудов по истории, экономике, филологии. Член ряда академий наук. Именем Ломоносова названы Московский университет (1940 г.), Московская Академия тонкой химической технологии (1940 г.), город Ломоносов (бывший Ораниенбаум). АН СССР учредила (1956 г.) Золотую медаль им. М.В. Ломоносова за выдающиеся работы в области химии и других естественных наук. Дмитрий Иванович МЕНДЕЛЕЕВ (1834-1907) Дмитрий Иванович Менделеев – великий русский ученый-энциклопедист, химик, физик, технолог, геолог и даже метеоролог. Менделеев обладал удивительно ясным химическим мышлением, он всегда ясно представлял конечные цели своей творческой работы: предвидение и пользу. Он писал: "Ближайший предмет химии составляет изучение однородных веществ, из сложения которых составлены все тела мира, превращений их друг в друга и явлений, сопровождающих такие превращения". Менделеев создал современную гидратную теорию растворов, уравнение состояния идеального газа, разработал технологию получения бездымного пороха, открыл Периодический закон и предложил Периодическую систему химических элементов, написал лучший для своего времени учебник химии. Он родился в 1834 году в Тобольске и был последним, семнадцатым по счету ребенком в семье директора Тобольской гимназии Ивана Павловича Менделеева и его жены Марии Дмитриевны. Ко времени его рождения в семье Менделеевых из детей осталось в живых два брата и пять сестер. Девять детей умерли еще в младенческом возрасте, а троим из них родители даже не успели дать имена. Учеба Дмитрия Менделеева в Петербурге в педагогическом институте вначале давалась нелегко. На первом курсе он умудрился по всем предметам, кроме математики, получить неудовлетворительные оценки. Но на старших курсах дело пошло по-другому – среднегодовой балл Менделеева был равен четырем с половиной (из пяти возможных). Он окончил институт в 1855 году с золотой медалью, получив диплом старшего учителя. Жизнь не всегда была благосклонна к Менделееву: были в ней и разрыв с невестой, и недоброжелательность коллег, неудачный брак и затем развод... Два года (1880 и 1881) были очень тяжелыми в жизни Менделеева. В декабре 1880 года Петербургская академия наук отказала ему в избрании академиком: "за" проголосовало девять, а "против" – десять академиков. Особенно неблаговидную роль при этом сыграл секретарь академии некто Веселовский. Он откровенно заявил: "Мы не хотим университетских. Если они и лучше нас, то нам все-таки их не нужно". В 1881 году с большим трудом был расторгнут брак Менделеева с первой женой, совершенно не понимавшей мужа и упрекавшей его в отсутствии внимания. В 1895 году Менделеев ослеп, но продолжал руководить Палатой мер и весов. Деловые бумаги ему зачитывали вслух, распоряжения он диктовал секретарю, а дома вслепую продолжал клеить чемоданы. Профессор И.В. Костенич за две операции удалил катаракту, и вскоре зрение вернулось… Зимой 1867-68 года Менделеев начал писать учебник "Основы химии" и сразу столкнулся с трудностями систематизации фактического материала. К середине февраля 1869 года, обдумывая структуру учебника, он постепенно пришел к выводу, что свойства простых веществ (а это есть форма существования химических элементов в свободном состоянии) и атомные массы элементов связывает некая закономерность. Менделеев многого не знал о попытках его предшественников расположить химические элементы по возрастанию их атомных масс и о возникающих при этом казусах. Например, он не имел почти никакой информации о работах Шанкуртуа, Ньюлендса и Мейера. Менделееву пришла неожиданная мысль: сопоставить близкие атомные массы различных химических элементов и их химические свойства. Недолго думая, на обратной стороне письма Ходнева он записал символы хлора Cl и калия K с довольно близкими атомными массами, равными соответственно 35,5 и 39 (разница всего в 3,5 единицы). На том же письме Менделеев набросал символы других элементов, отыскивая среди них подобные "парадоксальные" пары: фтор F и натрий Na, бром Br и рубидий Rb, иод I и цезий Cs, для которых различие масс возрастает с 4,0 до 5,0, а потом и до 6,0. Менделеев тогда не мог знать, что "неопределенная зона" между явными неметаллами и металлами содержит элементы – благородные газы, открытие которых в дальнейшем существенно видоизменит Периодическую систему. Постепенно начал вырисовываться облик будущей Периодической системы химических элементов. Так, вначале он положил карточку с элементом бериллием Be (атомная масса 14) рядом с карточкой элемента алюминия Al (атомная масса 27,4), по тогдашней традиции приняв бериллий за аналог алюминия. Однако затем, сопоставив химические свойства, он поместил бериллий над магнием Mg. Усомнившись в общепринятом тогда значении атомной массы бериллия, он изменил ее на 9,4, а формулу оксида бериллия переделал из Be2O3 в BeO (как у оксида магния MgO). Кстати, "исправленное" значение атомной массы бериллия подтвердилось только через десять лет. Так же смело действовал он и в других случаях. Постепенно Дмитрий Иванович пришел к окончательному выводу, что элементы, расположенные по возрастанию их атомных масс, выказывают явную периодичность физических и химических свойств. В течение всего дня Менделеев работал над системой элементов, отрываясь ненадолго, чтобы поиграть с дочерью Ольгой, пообедать и поужинать. Вечером 1 марта 1869 года он набело переписал составленную им таблицу и под названием "Опыт системы элементов, основанной на их атомном весе и химическом сходстве" послал ее в типографию, сделав пометки для наборщиков и поставив дату "17 февраля 1869 года" (это по старому стилю). Так был открыт Периодический закон...
|
|||||||||
Последнее изменение этой страницы: 2017-02-05; просмотров: 5093; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 44.220.181.180 (0.019 с.) |