ТОП 10:

Параллельные квантовыевселенные



 

Думаю, не ошибусь, если скажу, что никто не понимает квантовую механику.

Ричард Фейнман

 

Любой, кто не поражен квантовой теорией, просто ее не понимает.

Нильс Бор

 

Двигатель, основанный на принципе Бесконечной Невероятности, — это прекрасный новый способ пересечения огромных межзвездных расстояний за доли секунды без нудного болтания по гиперпространству.

Дуглас Адаме

 

В сверхпопулярном эксцентричном научно-фантастическом романе Дугласа Адамса «Автостопом по галактике» герой находит оригинальный способ путешествия к звездам. Вместо использования червоточин, гипердорог или порталов в другие измерения для путешествия в иные галактики, он решает овладеть принципом неопределенности, чтобы молниеносно преодолевать широты межгалактического пространства. Если бы мы могли каким-то образом подчинить себе вероятность определенных невероятных событий, то стало бы возможным все что угодно, в том числе путешествия со скоростью, превосходящей световую, и даже путешествия во времени. Достичь далеких звезд за секунды маловероятно, но при условии, что вы можете управлять квантовыми вероятностями по своему усмотрению, даже невозможное может стать делом привычным.

Квантовая теория основана на том, что существует вероятность, что все возможные события могут произойти вне зависимости от того, насколько они фантастичны или глупы. Это, в свою очередь, лежит в основе инфляционной теории — в момент Большого Взрыва произошел квантовый переход в новое состояние, находясь в котором Вселенная внезапно невероятно расширилась. Видимо, вся наша Вселенная могла зародиться в результате маловероятного квантового скачка. Хотя Адаме писал в шутку, мы, физики, понимаем, что если бы можно было каким-то образом управлять этими вероятностями, то стали бы доступны трюки, неотличимые от волшебства. Но в настоящее время изменение вероятностей происхождения событий находится далеко за пределами возможностей нашей технологии.

Иногда я даю аспирантам нашего университета задания попроще, например вычислить вероятность того, что они внезапно дематериализуются и снова возникнут с другой стороны кирпичной стены. Согласно квантовой теории, существует малая, но исчисляемая вероятность того, что такое может произойти. Или, коли на то пошло, вероятность того, что мы дематериализуемся у себя в гостиной и попадем на Марс. Согласно квантовой теории, в принципе можно внезапно рематериализоваться на красной планете. Конечно же, эта вероятность настолько мала, что нам пришлось бы ждать дольше жизни Вселенной. В результате в нашей повседневной жизни мы отбрасываем вероятность таких событий. Но на субатомном уровне такие вероятности жизненно необходимы для функционирования электроники, компьютеров и лазеров.

По сути, электроны регулярно дематериализуются и рематериа-лизуются на другой стороне стенки в запчастях ваших компьютеров и компакт-дисков. В принципе, вся современная цивилизация потерпела бы крушение, если бы электроны не могли находиться в двух местах одновременно. (Молекулы, из которых состоят наши тела, тоже распались бы, не будь этого причудливого принципа. Представьте себе столкновение двух солнечных систем в космосе, происходящее согласно законам гравитации Ньютона. Столкнувшиеся солнечные системы распались бы и превратились в кучу хаотически разбросанных планет и астероидов. Подобным образом, если бы атомы действовали в соответствии с законами Ньютона, они бы распадались всякий раз, врезаясь в другой атом. Два атома объединяются в молекулу именно на основе способности электронов одновременно находиться в таком огромном количестве мест, что они образуют «электронное облако», которое удерживает атомы вместе. Таким образом, молекулы устойчивы, а Вселенная не разваливается потому, что электроны могут находиться во многих местах одновременно.)

Но если электроны могут существовать в параллельных состояниях, паря на грани существования и небытия, то почему не может то же самое происходить и со Вселенной? В конце концов, в какой-то момент Вселенная была меньше, чем электрон. Признав возможность применения квантового принципа ко Вселенной, мы вынуждены принять во внимание существование параллельных вселенных.

Именно эта возможность рассматривается в волнующем научно-фантастическом романе Филиппа Дика «Человек в высоком замке». В книге существует другая вселенная, отделенная от нашей одним-единственным кардинальным событием. В той вселенной в 1933 году история изменяется, когда пуля наемного убийцы убивает президента Рузвельта в первый год после его избрания. Его обязанности берет на себя вице-президент Гарнер, который проводит политику изоляционизма, в военном отношении ослабляющую Соединенные Штаты. Не подготовившись к атаке на Перл-Харбор и так и не оправившись после потери всего флота, Соединенные Штаты в 1947 году вынуждены подчиниться немцам и японцам. В конце концов США разделили на три части: германский рейх контролировал восточное побережье, японцы — западное побережье, между которыми находилась тревожная граница — штаты Скалистых Гор. В этой параллельной вселенной загадочный человек пишет книгу под названием «Саранча садится тучей», основанную на цитате из Библии, запрещенной нацистами. В книге говорится о другой вселенной, где Рузвельта не убивают, а Британия и Соединенные Штаты побеждают нацистов. Миссия героини заключается в том, чтобы выяснить, есть ли правда другая вселенная, где царят свобода и демократия, а не тирания и расизм.

 

Сумеречная зона

 

Мир «Человека в высоком замке» и наш разделены крошечным несчастным случаем, одной-единственной пулей, вылетевшей из ружья убийцы-наемника. Однако возможно также, что параллельный мир может отделять от нашего ничтожное возможное событие: одно-единственное квантовое событие, воздействие космического луча.

В одном из эпизодов сериала «Сумеречная зона» человек просыпается и обнаруживает, что жена не узнает его. Она с криком выгоняет его, угрожая тем, что вызовет полицию. Бродя по городу, человек выясняет, что и закадычные друзья также не узнают его, будто бы он никогда и не существовал. В конце концов он заходит в гости к своим родителям; это посещение потрясает его до глубины души. Родители заявляют, что они видят его впервые и вообще у них никогда не было сына. Оставшись без семьи, друзей и дома, герой бесцельно бродит по городу и в конце концов, как бездомный, засыпает на скамье в парке. Проснувшись на следующий день, он обнаруживает, что снова лежит в удобной постели рядом со своей женой. Однако, когда жена поворачивается к нему лицом, он с ужасом видит, что это вовсе не его жена, а совершенно незнакомая женщина, которой он никогда прежде не видел.

Возможны ли такие абсурдные ситуации? Может быть. Если бы главный герой «Сумеречной зоны» задал несколько откровенных вопросов своей матери, то, возможно, узнал бы, что она перенесла выкидыш, а потому у нее действительно никогда не было сына. Иногда один-единственный космический луч, одна-единственная частица из открытого космоса может проникнуть глубоко в ДНК эмбриона и стать причиной мутации, которая в конце концов вызовет выкидыш. В таком случае одно-единственное квантовое событие может разделить два мира — тот, где вы живете и являетесь нормальным полезным гражданином, и еще один, абсолютно идентичный первому, где вы так и не были рождены.

Перемещение между этими мирами находится в соответствии с законами физики. Но оно чрезвычайно маловероятно; вероятность того, что это случится, астрономически мала. Однако, как вы видите, квантовая теория дает нам картину намного более странной вселенной, чем та, которую подарил нам Эйнштейн. В теории относительности сцена жизни, на которой мы играем свои роли, может быть сделана из резины, и актеры передвигаются между декорациями по кривой. Как и в мире Ньютона, актеры в мире Эйнштейна повторяют строчки своих написанных заранее ролей. Но в «квантовой» пьесе актеры внезапно выбрасывают свои сценарии и начинают играть по своей собственной воле. Марионетки обрывают свои нитки. Устанавливается царство свободной воли. Актеры могут исчезать и снова появляться на сцене. Что еще более странно, они могут обнаружить, что появляются в двух местах одновременно. Произнося свои реплики, актер никогда не может быть уверен, что партнер внезапно не исчезнет и не появится в другом месте.

 

Исполинский ум: Джон Уилер

 

За исключением разве что Эйнштейна и Бора, никто не вел более горячей борьбы с нелепостями и успешными моментами квантовой теории, чем Джон Уилер. Является ли физическая реальность всего лишь иллюзией? Существуют ли параллельные квантовые вселенные? В прошлом, не вдаваясь в подробности этих упрямых квантовых парадоксов, Уилер применял эти вероятности для конструирования атомной и водородной бомб, а также был пионером в изучении черных дыр. Джон Уилер был последним из гигантов, или, как когда-то назвал их его студент Ричард Фейнман, «исполинских умов», который и до сих пор борется с безумными следствиями квантовой теории.

Именно Уилер предложил термин «черная дыра» в 1967 году в Нью-Йорке на конференции в Институте космических исследований им. Годдарда, NASA, после открытия первых пульсаров.

Уилер родился в 1911 году в Джексонвилле (штат Флорида). Его отец был библиотекарем, но инженерия были в крови у членов семьи. Три его дяди были горными инженерами и в своей работе часто использовали взрывчатые вещества. Сама идея использования динамита глубоко захватила Джона, он обожал наблюдать за взрывами. (Однажды он неосторожно экспериментировал с куском динамита и тот случайно взорвался прямо у него в руке, оторвав один палец и фалангу другого. По случайному совпадению, когда Эйнштейн учился в школе, с ним произошел подобный случай: из-за его неосторожности взрыв произошел прямо у него в руке, и потребовалось наложить несколько швов.)

В детстве Уилер был развит не по годам, он овладел основами математики и глотал все книги, какие ему только удавалось найти, по новой теории, о которой не переставая говорили его друзья, — квантовой механике. Прямо на его глазах новая теория переживала свое становление в Европе, ее разработкой занимались Нильс Бор, Вернер Гейзенберг и Эрвин Шрёдингер, внезапно раскрышпий секреты атома. Всего лишь несколько лет назад последователи философа Эрнста Маха поднимали на смех саму идею существования атомов, утверждая, что никогда еще атомы не удавалось наблюдать в лабораторных условиях и что вообще они наверняка были всего лишь выдумкой. Чего нельзя увидеть, то и существовать наверняка не может, утверждали они. Великий немецкий физик Людвиг Болыгман, заложивший основы термодинамики, покончил жизнь самоубийством в 1906 году отчасти из-за постоянных насмешек, с которыми ему приходилось иметь дело, проводя в жизнь концепцию атомов.

Затем всего за пару лет, с 1925 по 1927 годы, было раскрыто множество секретов атомов. Современная история не знала случаев, чтобы прорывы такого масштаба были совершены за столь краткий промежуток времени (за исключением работы Эйнштейна в 1905 году). Уилер хотел принять участие в этом перевороте. Но он понимал, что Соединенные Штаты оставались за бортом достижений в области физики: в пределах страны не было ни единого физика мирового масштаба. Подобно Дж. Роберту Оппенгеймеру до него, Уилер уехал из Соединенных Штатов и отправился в Копенгаген, чтобы учиться у самого Маэстро — Нильса Бора.

Эксперименты по изучению электронов показали, что электроны действуют и как частицы, и как волны. Секрет этой странной двойственности был в конце концов раскрыт квантовыми физиками: совершая свой танец вокруг атома, электрон виделся частицей, но эту частицу сопровождала загадочная волна. В 1925 году австрийский физик Эрвин Шрёдингер предложил уравнение (знаменитое уравнение Шрёдингера), которое в точности описывало движение волны, сопровождающей электрон. Эта волна, обозначаемая греческой буквой с ошеломительной точностью прогнозировала поведение атомов, что стало первой искрой, от которой вспыхнул пожар революции в физике. Внезапно, основываясь на самом элементарном знании, стало возможно вглядеться в атом и вычислить, сколько электронов танцуют на своих орбитах, совершая переходы и соединяя атомы в молекулы.

Квантовый физик Поль Дирак хвастливо пообещал, что физики скоро сведут всю химию к простой инженерии. Он заявил: «Основополагающие физические законы, составляющие математическую базу большей части физики и всей химической науки, уже известны. Единственная трудность состоит в том, что применение этих законов приводит к получению слишком сложных и не поддающихся решению уравнений». Как ни была внушительна эта \/-функция, до сих пор оставалось загадкой, что же именно она представляла.

В конце концов в 1928 году Макс Борн выдвинул идею о том, что эта волновая функция представляла вероятность обнаружения электрона в любой заданной точке. Иными словами, вы никогда не могли быть точно уверены, где находится электрон; максимум того, что вы могли сделать, — это вычислить его волновую функцию, которая давала вероятность его нахождения именно «там». Итак, если атомная физика могла быть сведена к волнам вероятности нахождения электрона «там» или «тут» и если электрон, по-видимому, мог находиться в двух местах одновременно, то как же нам в конце концов определить, где он действительно находится?

Бор и Гейзенберг в конце концов сформулировали полный набор рецептов в кулинарной книге физики, которые сработали в атомных экспериментах с потрясающей точностью. Волновая функция дает информацию только о вероятности того, что электрон находится «тут» или «там». Если для какой-то точки волновая функция велика, то это означает высокую вероятность того, что электрон находится именно там. (Если она мала, то маловероятно, что электрон находится там.) Например, если бы мы могли «видеть» волновую функцию человека, то она выглядела бы очень похожей на этого человека. Однако волновая функция также плавно распространяется и на космос, а это значит, что существует малая вероятность того, что человек окажется на Луне. (По сути, волновая функция человека распространяется по всей Вселенной.)

Это также означает, что волновая функция дерева может сообщить вам информацию о вероятности того, стоит ли оно или падает, но она не может определенно ответить вам на вопрос, в каком же состоянии оно действительно находится. Но здравый смысл говорит нам, что объекты находятся в каком-то определенном состоянии. Когда вы смотрите на дерево, оно определенно находится перед вами — либо стоит, либо падает, но не делает и того, и другого одновременно.

Чтобы разрешить несовпадения между волнами вероятности и представлением о существовании, диктуемым нашим здравым смыслом, Бор и Гейзенберг предположили, что после измерения, совершенного далеким наблюдателем, волновая функция волшебным образом «коллапсирует» и электрон впадает в определенное состояние — то есть, посмотрев на дерево, мы видим, что оно действительно стоит. Иными словами, процесс наблюдения определяет конечное состояние электрона. Наблюдение жизненно необходимо для существования. После того как мы взглянем на электрон, его волновая функция коллапсирует; таким образом, он теперь находится в определенном состоянии и больше нет нужды в волновых функциях.

Итак, постулаты копенгагенской школы Бора можно суммировать приблизительно в следующем виде:

1. Вся энергия встречается в виде отдельных пучков энергии, называемых квантами. (Например, квантом света является фотон. Кванты слабого взаимодействия называются W- и Z-бозонами, квантом сильного взаимодействия является глю-он, а квант гравитации называется гравитоном, который нам еще предстоит увидеть в лабораториях.)

2. Вещество представлено точечными частицами, но вероятность обнаружения этой частицы определяется волной. Сама волна, в свою очередь, подчиняется определенному волновому уравнению (такому, как волновое уравнение Шрёдингера).

3. Перед наблюдением объект существует во всех возможных состояниях одновременно. Чтобы определить, в каком состоянии находится объект, нам необходимо провести наблюдение, в результате которого волновая функция «коллапсирует» и объект входит в определенное состояние. Сам акт наблюдения уничтожает волновую функцию, и объект приобретает реальную определенность. Волновая функция служит своей цели: она дает нам точную вероятность обнаружения данного объекта в конкретном состоянии.

 







Последнее изменение этой страницы: 2016-04-08; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 35.175.113.29 (0.007 с.)