Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Представление целых и действительных чисел в позиционных системах счисления

Поиск

Вещественные числа обычно представляются в виде чисел с плавающей запятой. Числа с плавающей запятой — один из возможных способов представления действительных чисел, который является компромиссом между точностью и диапазоном принимаемых значений, его можно считать аналогом экспоненциальной записи чисел, но только в памяти компьютера.

Число с плавающей запятой состоит из набора отдельных двоичных разрядов, условно разделенных на так называемые знак (англ. sign), порядок (англ. exponent) и мантиссу (англ. mantis). В наиболее распространённом формате (стандарт IEEE 754) число с плавающей запятой представляется в виде набора битов, часть из которых кодирует собой мантиссу числа, другая часть — показатель степени, и ещё один бит используется для указания знака числа ( — если число положительное, — если число отрицательное). При этом порядок записывается как целое число в коде со сдвигом, а мантисса — в нормализованном виде (от 1 до 10), своей дробной частью в двоичной системе счисления. Знак — один бит, указывающий знак всего числа с плавающей точкой. Порядок и мантисса — целые числа, которые вместе со знаком дают представление числа с плавающей запятой в следующем виде:

, где — знак, — основание, — порядок, а — мантисса. Десятичное число, записываемое как , где — число в полуинтервале , — степень, в которой стоит множитель ; в нормализированной форме модуль будет являться мантиссой, а — порядком, а будет равно тогда и только тогда, когда принимает отрицательное значение. Например, в числе

§ =

§ =

§ =

§ =

Порядок также иногда называют экспонентой или просто показателем степени.

При этом лишь некоторые из вещественных чисел могут быть представлены в памяти компьютера точным значением, в то время как остальные числа представляются приближёнными значениями.

56. Связь между системами счисления с основаниями вида 2k

Перевод чисел между системами счисления, основания которых являются степенями числа 2, может производиться более простым алгоритмом. Для записи двоичных чисел используют две цифры, то есть в каждом разряде числа возможны два варианта записи. Для записи восьмеричных чисел используется восемь цифр, то есть возможны восемь вариантов. А для записи шестнадцатеричных чисел используется 16 цифр, то есть 16 возможных вариантов.

Таким образом, для перевода целого двоичного числа в восьмеричное его нужно разбить на группы по три цифры, справа налево, а затем преобразовать каждую группу в восьмеричную цифру. Если в последней, левой, группе окажется меньше трех цифр, то нужно его дополнить нулями слева.

Ну типа как на ЕГЭ.

Например, преобразуем дробное двоичное число А 2 = 0,1101012 в восьмеричную систему счисления:

 

Двоичные триады    
Восьмеричные цифры    

 

Получаем: А 8 = 0,658.



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 1147; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.146.94 (0.006 с.)